
Hydrodynamic estimation and

identification

Msc Thesis by:

Håvard Bø

Norwegian University of Science and Technology, NTNU

Department of Engineering Cybernetics

Trondheim, Norway

2nd August 2004

Preface

With this document, five years of studies comes to an end. Five years? It
certainly does not feel that long. What happened? What did we do? Moreover,
what are we going to do? The series of questions are endless; and so are the
series of answers, only that some of them are not known yet...

I remember when I first started at NTNU, these simple words of wisdom saying:

”...havet er stort,
ikke kødd med havet...”

or in English ”the ocean is huge, don’t bullshit the ocean”. Simple words, but
after five years of study I still remember them. Why? It is hard to say, but
during the last few years, my respect for the ocean has increased. Why? the last
two years, I have seen that there are so many matters, regarding the ocean, that
we do not know how to control. What... The series of questions are endless,
and the solutions are yet to determine. I am looking forward to it...

Acknowledgment

I would first and foremost like to thank my supervisor at NTNU, Professor Thor
Inge Fossen for being my supervisor and for teaching me the subject guidance
and control. I would also like to thanks Professor António Pascoal (ISR/IST)
and Professor Ettore A. Barros (University of São Paulo) for their kindness and
help during my stay at ISR. They have all been great inspirational sources, and
have supported me during the creation of this document.

Secondly, I would like to thank Dr. Peter Ridley (Queensland University of
Technology) for providing me additional data and drawings belonging to the
work of Ridley, Fontan & Corke (2003). Without his help, it would be difficult
to verify the output from the Matlab ToolBox created during this work. Ann
Johanne Bjørge, at the Marine library at NTNU, thank you very much for
providing me reports and articles to the other end of Europe. Last, but not
least, I would like to thanks my friend and fellow student, Åsmund Hjulstad,
for our mutual discussions regarding marine control and applications.

Håvard Bø
August 2004

v

Abstract

This thesis addresses the problem of estimating the dynamics of an autonomous
underwater vehicle (AUV). The theory presented is not limited to a specific
design, but an autonomous underwater vehicle that is being developed under a
joint Indian-Portuguese project, MAYA, will be used as an example. In order to
obtain the dynamic equations of motion, we make use of empirical methods to
obtain the hydrodynamic derivatives for a body of revolution. The USAF Stabil-
ity and Control Datcom, a data compendium developed to determine the analo-
gous aerodynamic stability derivatives for aircrafts, is used as a tool for obtaining
estimates of the non-dimensional derivatives in an incompressible medium. The
theory and equations involved are rewritten into a standard form for underwater
vehicles.

A Matlab Toolbox, hde (short for HydroDynamic Estimation), is developed.
The toolbox is capable of estimating static and dynamic derivatives in the hor-
izontal and vertical plane, in addition to added mass in six degrees of freedom.
A nonlinear simulation environment which retains all the nonlinearities inherent
in the coupled dynamics equations of motion, as well as those inherent to the
hydrodynamic relations which govern the forces acting on the hull and control
planes, is also implemented as a part of the toolbox.

The results obtained from hde are compared with experimental data, where
simulations in hde indicate that lift and turning rates are comparable with
experimental data. The same yields for the added mass terms, which are very
close to data reported from experimental results.

Estimation of added mass for an AUV with the aid of WAMIT, a commercial
hydrodynamic computation program, has been executed. The result from these
experiments reveals that WAMIT fails to accurately estimate the added mass
contribution from the low aspect-ratio foils involved in a typical AUV design.

vii

Table of Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Contribution and organization . 3

2 Preliminaries 5

2.1 Coordinate systems . 5
2.1.1 NED . 5
2.1.2 Body . 5
2.1.3 Current and Stability Axes 6

2.2 AUV design (typical) . 7
2.2.1 Control surfaces . 7
2.2.2 Body shape . 8

2.3 Hydrodynamic Computation, Background 11
2.3.1 Hydrostatics . 11
2.3.2 Coriolis . 12
2.3.3 Added-Mass . 12

3 Lift and Drag 17

3.1 Lift . 18
3.1.1 Foil alone . 18
3.1.2 Body alone . 19
3.1.3 Foil- body combination 19

3.2 Drag . 22
3.2.1 Body alone . 24
3.2.2 Foil alone . 24
3.2.3 Foil- body combination 25

3.3 Pitching moment, Cmα . 26
3.4 Pitching moment, Cmδ

. 29
3.5 Pitching derivative, CLq . 29
3.6 Pitching derivative, Cmq . 30
3.7 Open loop transfer functions . 31
3.8 Discussion . 32

4 Example 33

4.1 Vehicle . 33
4.2 Hydrodynamic derivatives . 34

ix

x TABLE OF CONTENTS

4.3 Foil alone . 34
4.3.1 Summary . 38

4.4 Body alone . 38
4.4.1 Summary . 39

4.5 Foil body combination . 39
4.5.1 Summary . 43

4.6 Added mass . 43
4.7 Open loop simulation . 44
4.8 Discussion . 44

5 Hydrodynamic software 47
5.1 Matlab Toolbox- hde . 47

5.1.1 Running the application 47
5.1.2 Viewing the output . 49

5.2 Simulation environment . 50
5.2.1 hde Simulink interface . 51
5.2.2 Open loop simulations . 52

5.3 WAMIT . 54
5.4 Comparison . 55

5.4.1 Added mass . 55
5.4.2 Drag . 57

5.5 Discussion . 57

6 Conclusion 59
6.1 Recommendations for future work 60

References 61

Appendices 65

A Nomenclature 67
A.1 Notation . 67
A.2 Abbreviations . 68
A.3 Matematical definitions and notation 68
A.4 Derivation of body-pitching moment curve slope 70
A.5 Open loop transfer functions . 71

B MatlabSource code 73
B.1 hde-toolbox . 73

B.1.1 hdeSimulinkModel.m . 73
B.1.2 HDE.m . 79
B.1.3 addedMass.m . 99
B.1.4 bodyAlone.m . 101
B.1.5 bodyCalc.m . 104
B.1.6 calcVolumSurface.m . 106
B.1.7 convert2sname.m . 108
B.1.8 dampingTerms.m . 110
B.1.9 editRigidBody.m . 111

TABLE OF CONTENTS xi

B.1.10 editVertexes.m . 112
B.1.11 foilalone.m . 113
B.1.12 foilBodyComb.m . 115
B.1.13 foilCalc.m . 118
B.1.14 foilDialog.m . 122
B.1.15 massNonDim.m . 125
B.1.16 MrigidBody.m . 125
B.1.17 rudderTerms.m . 125

C WAMIT- runs 127
C.1 Input files . 127

C.1.1 Fnames.wam . 127
C.1.2 Maia.cfg . 127
C.1.3 Maia.pot . 127
C.1.4 Maia.frc . 128
C.1.5 Maia.gdf . 129
C.1.6 Maia.ms2 . 129

C.2 Output . 131
C.2.1 Wave period, zero . 131
C.2.2 Wave period, [0.1:0.1:1] 132
C.2.3 Wave period, [1:1:10] . 138
C.2.4 Infinite depth . 144

D CD Contents 147

List of Figures

2.1 Reference frames . 6
2.2 Definition of current and stability axes 7
2.3 Forces on a hydrofoil . 8
2.4 Foil parameters . 9
2.5 Laminar form hull . 9
2.6 Torpedo shaped AUV . 10
2.7 Axial added mass parameter (interpolated) 13

3.1 Apparent mass factor . 19
3.2 Pressure distribution of typical torpedo 20
3.3 Body station where flow cease to be potential 20
3.4 Lift ratios KF (B) and KB(F) (Slender body theory) 22
3.5 Lift ratio, kF (B), based on slender body theory 23
3.6 Friction drag . 25
3.7 Lifting surface correlation factor 26

4.1 Cross-section of a NACA 0012 profile 34
4.2 Hydrodynamic center foil . 37
4.3 Plot of

(
xhc
Lpp

)

B(F)
versus βAe 41

4.4 Ellipsoid fitted within the hull . 43
4.5 Open loop simulation, depth rate 45
4.6 Open loop simulation, pitch and angle of attack 46

5.1 hde- start menu . 47
5.2 hde- Creating a vertex model . 48
5.3 hde- Foil dialog . 48
5.4 hde- Torpedo model . 50
5.5 hde Simulink interface, hdeSim 52
5.6 hde, AUV model . 52
5.7 Simulation of yaw step response 53
5.8 hde- model, REMUS . 54
5.9 hde open loop simulation, step δe = 5◦ at t′ = 5 54
5.10 Flow chart of WAMIT . 55
5.11 MultiSurf CAD model, MAYA . 56
5.12 hde model used to obtain Table 5.5 56

xiii

List of Tables

2.1 Straight tapered foil, parameters 8
2.2 Rigid-body dynamics, nomenclature 11
2.3 Axial added mass parameter . 13

3.1 Nondimensional parameters, open loop transfer function 32

4.1 Body parameters (MAYA) . 34
4.2 MAYA particulars . 35
4.3 Foil alone, hydrodynamic coefficients 38
4.4 Body alone, hydrodynamic coefficients 39
4.5 Interference factors . 40
4.6 Hydrodynamic coefficients, foil body combination, 43
4.7 Nondimensional parameters, open loop transfer function 45

5.1 hde- user defined parameters . 49
5.2 REMUS particulars . 53
5.3 REMUS added mass, hde estimates vs. experimental results . . . 56
5.4 Added mass, hde estimates vs. Ridley et al. (2003) 56
5.5 MAYA added mass, hde estimates vs. WAMIT 57
5.6 Drag comparison, hde vs. experimental data 57

A.1 Nomenclature . 68

xv

Chapter 1

Introduction

The design and development of an autonomous underwater vehicle (AUV) is
a complex and expensive task. If the designer relies exclusively on prototype
testing to develop the vehicle’s geometry and controllers, the process can be
lengthy and poses the additional risk of prototype loss. Each design iteration
involves changes to the prototype vehicle, and may take considerably amount
of time. By using mathematical models it is possible to estimate expected
performance between different designs, and determine the inherent stability of a
proposed design before the prototype is manufactured. Further-more, by using
custom made software, it is possible to automatically obtain these mathematical
models and compare different designs with ”a few mouse clicks”.

1.1 Motivation

At the end of last semester, fall 2003, my supervisor at NTNU, Professor Thor
Inge Fossen, offered me the opportunity to write my thesis as a visiting student
at ”Instituto de Sistemas e Robótica” (ISR) at the university ”Instituto Superior
Tecnico” (IST) in Lisbon, Portugal; an offer I simply could not refuse. During
the past few years, ISR has carried out some very interesting projects and re-
search in the field of dynamical systems applied to the design and operation of
autonomous marine and aerial robots.

When I first arrived in Lisbon, it was decided that I should take part in the
work of Mr. Ettore Barros1, addressing the problem of autonomous under-
water vehicle (AUV) modelling as a mean to predict the expected dynamic
performance. There exists a number of methods for determination of the hydro-
dynamic coefficients used in the mathematical model which quantify the forces
acting on the body as a function of its attitude and motion. Broadly, they
can be broken down into test-based and predictive methods, where the former
include direct experimental determination based on wind-tunnel or tow-tank
experiments (Goheen 1991). A less direct, but perhaps more efficient test-
based method, is system identification techniques, which can be applied to both
free-swimming models and full-size vehicle tests (Pepijn, Johansen, Sørensen,

1a Brazilian professor from the University of Sao Paulo, visiting ISR on his sabbatical year

1

2 Chapter 1. Introduction

Flanagan & Toal 2004, Pereira & Duncan 2000). An overriding disadvantage
of the above methods is the need for a vehicle, as well as laboratory or in field
testing facilities. These are often not available, either for reasons of cost or,
simply, because the vehicle has not yet been constructed.

Predictive methods offer an attractive alternative to test-based methods when
the vehicle is still in the design stage (Nahon 1996). Using predictive methods,
the vehicle overall design can for instance be determined by comparing expected
characteristic for different vehicles, based on a optimal design criteria (Barros,
Pascóal & de Sa 2004). Further- more, from the control point of view it may
be advantageous if we could automatically obtain an ”accurate” dynamic model
of the vehicle; giving the opportunity to focus on the controllers instead of the
time consuming, and sometimes tedious, work of designing a ”plant” model (as
a former instructor, Professor Asgeir Sørensen, would have called it).

Datcom

In 1973, due to lack of methods to accurate estimate hydrodynamic characteris-
tics of submerged vehicles, the U.S Navy funded a systematic approach for ana-
lytically predicting these parameters (Humphreys 1981). The initial face of this
effort involved adaption of the USAF Stability and Control Datcom. Datcom
(1978) is a public-domain stability and control handbook, devised by McDonnell
Douglas for the U.S. Air Force for determination of aircraft stability proper-
ties. Datcom is a comprehensive collection of aerodynamic stability and control
techniques which is widely used through the aviation industry (Nelson 1997). It
provides semi-empirical methods for calculation of the subsonic, transonic, and
supersonic aircraft stability. In the following years, several authors have used
the Datcom to estimate stability derivatives for autonomous underwater vehicles
e.g. (Nahon 1993, Barros et al. 2004); some also provide comparison with exper-
imental data, e.g. (Maeda & Tatsuta 1989, Nahon 1996, Ridley et al. 2003), and
report remarkably good agreement between estimated and measured derivatives.

The Datcom can deal with a broad scope of aircraft shapes, some of which bear a
strong resemblance to streamlined underwater vehicles, which are designed for a
steady-state cruising condition. The major difference between aircrafts and un-
derwater vehicles is the medium in which they operate; differences in operating
medium, which must be accounted for, are principally those due to density and
viscous effects (Nahon 1993). Essentially, density effects are removed by making
the variables involved non-dimensional. Viscosity effects may be accounted for
through the Reynolds number at which the vehicle operates, i.e.,

Rn =
U l

ν
.

If we look at the kinematic viscosity, ν, for water, it is about one order of
magnitude smaller than that of air, while the speed (U) of a typical AUV is in
the order of two magnitudes smaller than a typical subsonic aircraft. In addition,
the length (l) of an AUV is in the order of one magnitude smaller than a typical

1.2. Contribution and organization 3

aircraft; thus, the Reynolds number for a typical AUV is comparable with that
of an airplane in the lower subsonic range.

1.2 Contribution and organization

Chapter 2

We start the next chapter with a brief discussion of the various coordinate
systems, commonly used in marine (local) navigation. Then we discuss some
issues regarding the shape and design of an autonomous underwater vehicle.
At the end of the chapter, we present the dynamic model; and how to obtain
estimates of restoring forces, Coriolis and added mass.

Chapter 3

Here, we will present the theory and equations used for calculation of lift, drag
and dynamic derivatives for a typical AUV. In general, it is well known that
there exists some mutual interference between the components in a foil-body
combination; for example, the total lift on a combination is greater than the
sum of the lift of the foil and body alone. In Chapter 3, great effort has been
placed on determining the interference between these components.

All equations and expressions, which are mainly based on Datcom (1978) and
the references therein, have been rewritten into a form, which is standard for
submerged bodies (SNAME 1950).

Chapter 4

In Chapter 4, we will calculate the expected performance for the MAYA AUV in
the vertical plane. The vehicle considered here, is identical to the one planned
to undergo towing tank experiments in the Marine Cybernetics Laboratory
(Fossen 2004b), during the fall of 2004. We will construct a linearized model
in the vertical plane, and develop a transfer functions to estimate the expected
performance.

Chapter 5

Here we will take the theory presented in Chapter 3 and 4 one step further. An
Matlab toolbox, hde, developed for estimating the static and dynamic param-
eters discussed in the previous chapters is introduced. The toolbox includes a
nonlinear Matlab Simulink interface, which can be used for simulating vehicles
constructed in the hde environment. This particular application, can be used to
simulate expected performance of vehicles, as well as for testing the robustness
of controllers in a non ideal environment. The output from the application is
compared with WAMIT, and experimental results.

4 Chapter 1. Introduction

Chapter 6

We end this thesis with a chapter where we discuss the results obtained from
the previous chapters; we also state some conclusions and recommendations for
future work.

Chapter 2

Preliminaries

In the following, it is assumed that the reader has some basic knowledge re-
garding the notation used to express the kinematic and dynamic of a marine
vehicle.

2.1 Coordinate systems

In this section we will briefly describe the coordinate systems which are com-
monly used to express the kinematic and dynamic of a marine vehicle. The
theory presented is far from complete; only equations and theory needed in the
next-coming chapters are described in some detail. For a thorough and detailed
explanation of the different coordinate systems, the reader is advised to visit
e.g. Fossen (2002).

2.1.1 NED

The North-East-Down coordinate system is defined relative to the earths ref-
erence ellipsoid. For this system the x-axis points towards the true North, the
y-axis points towards East, and the z-axis points downwards normal to the
Earth’s surface (Fossen 2002).

If we assume that the operating radius of the vehicle considered is limited, it is
common to approximate NED to flat earth navigation. Which means that the
tangent plane is fixed on the Earth surface- i.e. the latitude, µ, and longitude,
l, are constant (see Figure 2.1).

2.1.2 Body

The body-fixed reference frame [xb, yb, zb]
T is a moving coordinate frame which

is fixed to the vessel. The position and orientation of the vessel are described
relative to an inertial reference frame while the linear and angular velocities of
the vessel should be expressed in the body fixed coordinate system. The body
fixed velocities, ν, may be transformed into NED by a transformation provided
in Appendix A.3.

5

6 Chapter 2. Preliminaries

Figure 2.1: Reference frames (courtesy Fossen (2004a))

2.1.3 Current and Stability Axes

When deriving the hydrodynamic derivatives for a marine vessel it might be
advantageous to rotate the body fixed axes such that the direction of the speed

U =
√

u2
r + v2

r + w2
r (2.1)

points in the opposite direction of the new x-axis (Fossen 2002). The drag
force will then be along the body fixed x-axis, while the lift force will be along
the z-axis. Lift and drag forces can then be computed as a function of forward
speed and transformed back to the body frame coordinates. The transformation
between the body frame and stability/current axes may be written as





ur

vr

wr



 = RT
y,α RT

z,−β





U
0
0



 (2.2)

where Ry,α and Rz,−β are given by (2.3) and α and β are defined below. Note
that in (2.1) and (2.2), we have assumed that the relative velocity vector is
decomposed in the body frame (possibly through an angle of roll, γ; defined
below).

angle of attack, α; the angle to the longitudinal body axis from the projection

into the principal plane of symmetry of the velocity of the origin of the

body axes relative to the fluid, positive in the positive sense of rotation

about the y-axis (SNAME 1950).

2.2. AUV design (typical) 7

Figure 2.2: Definition of current and stability axes

sideslip angle, β; the angle to the principal plane of symmetry from the ve-

locity of the origin of the body axes relative to the fluid, positive in the

positive sense of rotation about the z-axis (SNAME 1950).

angle of roll, γ; the angular displacement about the x0-axis of the principal

plane of symmetry from the vertical, positive in the positive sense of rota-

tion about the x0-axis (SNAME 1950).

Ry,α =





cos α 0 sin α
0 1 0

− sinα 0 cos α



 , Rz,−β =





cos β sinβ 0
− sinβ cos β 0

0 0 1



 (2.3)

2.2 AUV design (typical)

Most AUVs maneuver by means of deflecting control surfaces (hydroplanes),
thrusters or a combination of both. Lateral or vertical thrusters are not normally
used, as they are less effective when lengthy transits at a constant ”cruise” speed
is required and a low-speed hovering capability is not. The vehicles computer
uses the hydroplanes for closed-loop control of heading, pitch, roll and depth.

2.2.1 Control surfaces

A hydrofoil immersed in a fluid at angle of attack, is intended to provide a large
force normal to the free stream (lift) and as little drag as possible. Conventional
design practice has evolved a shape not unlike a bird’s wing with a rounded
leading edge and a sharp trailing edge (White 1998). For our purpose, we
will consider straight tapered, non cambered foil sections; which is symmetric
about the chord line between the leading- and trailing edge. Definitions of
various parameters used for calculating the lift and drag forces in Chapter 3,
are provided in Table 2.2.1 and Figure 2.4

8 Chapter 2. Preliminaries

Figure 2.3: Forces on a hydrofoilAe aspect ratio, exposed foil (b−d)2

Se

b foil span

c chord of foil at any given span station y (parallel to XB)

c̄ mean hydrodynamic chord 2 cr
3 · 1+λ+λ2

1+λ

cr root chord

ct tip chord

Se exposed foil area (b−d) cr (1+λ)
2

Swf foil, wetted area

m, n nondimensional chordwise stations in terms of c

yhc spanwise location of mean hydrodynamic center d
2 + b−d

6 · 1+2λ
1+λ

λ taper ratio ct
cr

Λle sweep angle of leading edge

Λte sweep angle of trailing edge

Λm, Λn sweep angles of arbitrary chordwise locations

tanΛn = tanΛm − 4 (n−m)Ae
· 1−λ

1+λ

Table 2.1: Straight tapered foil, parameters

2.2.2 Body shape

The shape of an AUV determines the propulsion energy required, as well as the
stability and maneuverability at various operating speeds. A hull form may also
impose limitations on launch and recovery, vehicle access, and maintenance.

Skin friction and form drag contribute to overall vehicle drag. Friction drag
varies with speed and the exposed surface area , which imply that smaller hulls
with less surface area have less friction drag. Form drag is a function of the
how well the hull shape minimizes flow separation. Longer, more slender shapes
tend to be better in this respect. Test results indicate that streamlined bodies

2.2. AUV design (typical) 9

Figure 2.4: Foil parameters (Datcom 1978)

with length to diameter ratios between 5 and 7 are best for minimizing drag
(Gertler 1950, Carmichael 1966).

From the simple perspective of drag reduction, a streamlined body form (see
Figure 2.5) which promotes laminar flow within the boundary layer is the best
choice. In laminar flow, fluid particles move in layers. Skin friction drag is
lower than in a turbulent boundary layer where the fluid particles move more
erratically resulting in higher shear stresses. To sustain laminar flow, a hull is
designed such that the diameter increases gradually from the nose to create a
favorable pressure gradient over the forward 60-70% of the hull (International
Submarine Engineering Ltd 2004). In this area, the surface must be smooth
and as hydrodynamically ”clean” as possible. Forward-mounted hydroplanes
cannot be fitted as they could destabilize the laminar flow. Consequently, all
hydroplanes are mounted on a tailboom. Unfortunately, the unique shape of
the laminar flow body does not readily permit lengthening (or shortening) the
vehicle, thus limiting the possibility of modular expansion.

Figure 2.5: Laminar form hull

10 Chapter 2. Preliminaries

A simpler alternative to the laminar flow form is commonly called the ”torpedo
body”. The torpedo body has a nose cap followed by a parallel mid-section and
a tapered tail section. Since the torpedo body is not a laminar flow vehicle, drag
should be expected to be greater than with the laminar flow hull. While lacking
the hydrodynamic efficiency of the laminar flow hull, the torpedo body drag is
relatively insensitive to manufacturing imperfections or damage that may occur.
The packing density for payload and power source is also better in the torpedo
hull than in the laminar flow body. Furthermore, the long parallel mid-section
allows the vehicle length to be extended for future growth. The shape of a
torpedo body, see Figure 2.6, may be divided into three sections (Myring 1976):

Nose The shape is given by the modified semi-elliptical radius distribution

r(x) =
d

2

(

1 −
(

x − a

a

)2
) 1

n

, 0 ≤ x ≤ a , (2.4)

where d is the maximum body diameter, a is the nose length, and n is a
parameter which determines the shape of the nose.

Midsection Here, the shape is simply given by a cylinder with constant radius;

r(x) =
d

2
, a ≤ x ≤ b . (2.5)

Tail The radius distribution is given by the cubic relationship

r(x) =
d

2
−

(
3 d

2 (L − b)2
− tan θ

L − b

)

(x − b)2

+

(
d

(L − b)3
− tan θ

(L − b)2

)

(x − b)3 , b < x < L , (2.6)

where 2θ is the included angle at the tip of the tail and L is the total
length of the vehicle (L > a + b). Different tail shapes are produced, by
varying θ.

Figure 2.6: Torpedo shaped AUV

2.3. Hydrodynamic Computation, Background 11

2.3 Hydrodynamic Computation, Background

The equations of motion for a submerged body involves the study of statics and
dynamics. Static is concerned with the equilibrium of bodies at rest or mov-
ing with constant velocity, whereas dynamics is concerned with bodies having
accelerated motion (Fossen 2002). Using the notation of Fossen, the dynamic
equations of motion, for a submerged vehicle operating outside the wave affected
zone, can conveniently be expressed as

(MRB + MA) ν̇ + CRB(ν)ν + CA(νr)νr + D(νr)νr + g(η) = τ , (2.7)

where the subindexes RB and A refers to the rigid body and added mass re-
spectively. The other terms are explained in Table 2.2.

Symbol Description

MRB + MA system inertia matrix
C(·) Coriolis centripetal matrix
D(·) damping matrix
g(η) vector of restoring forces and moments
τ vector of control inputs
ν body fixed velocity vector
νr relative velocity vector
η position and orientation vector

Table 2.2: Rigid-body dynamics, nomenclature

The rigid body system inertia matrix will not be further explained in this report;
the interested reader is instead advised to visit e.g Fossen (2002) for a thorough
and detailed explanation. Further, theory for estimation of the nonlinear damp-
ing matrix, D(·), and the nonlinear vector of control, τ , will not be presented
in a way which is directly applicable to the notation used in (2.7). Instead,
we will use an approach, in Chapter 5, where we calculate these hydrodynamic
properties directly from known relations which govern the flow around simple
shapes. Theory and procedures for estimating the other terms are given below.

2.3.1 Hydrostatics

The vehicle experiences hydrostatic forces and moments as a result of the com-
bined effects of the vehicle weight (W) and buoyancy (B = ρ g V–). If we de-
fine the earth fixed buoyancy and gravity vectors as fn

b = [0, 0, −B]T and
fn

g = [0, 0, W]T respectively. Then the body fixed restoring forces and moment
vector is given by

g(η) =

[
Rb

n(Θ)
(
fn

b + fn
g

)

S(rb
g)

(
Rb

n(Θ)fn
g

)
+ S(rb

b)
(
Rb

n(Θ)fn
b

)

]

, (2.8)

where rb
g = [xG, yG, zG]T and rb

b = [xB, yB, zB]T are the body-fixed location of
the center of gravity (CG) and center of buoyancy (CB) respectively (relative

12 Chapter 2. Preliminaries

to a given point of reference). S(·) and Rb
n(Θ) are the vector cross product

operator and the euler rotation matrix respectively (Fossen 2002), defined in
Appendix A.3.

2.3.2 Coriolis

According to Fossen (2002) the system inertia matrix may be utilized to obtain
a skew symmetric representation of the Coriolis centripetal matrix. If we write
the 6 × 6 system inertia matrix as

M = MT =

[
M11 M12

M21 M22

]

> 0 ,

where M21 = MT
12. Then the Coriolis-centripetal matrix can be parameterized

such that C(ν) = −CT(ν) by choosing

C(ν) =

[
03×3 −S(M11ν1 + M12ν2)

−S(M11ν1 + M12ν2) −S(M21ν1 + M22ν2)

]

, (2.9)

where S(·) is the cross product operator, defined by (A.4), and ν2 = [p, q, r]T.
If we consider the Coriolis contribution from the rigid body, then ν1 = [u, v, w]T;
else if we consider the contribution from the added mass matrix, then ν1 =
[ur, vr, wr]

T.

2.3.3 Added-Mass

If we restrict ourself to a typical AUV design, where the body has top-bottom
and port-starboard symmetry, the vehicle added mass matrix may be written
as

MA = −











Xu̇ 0 0 0 0 0
0 Yv̇ 0 0 0 Yṙ

0 0 Zẇ 0 Zq̇ 0
0 0 0 Kṗ 0 0
0 0 Mẇ 0 Mq̇ 0
0 Nv̇ 0 0 0 Nṙ











. (2.10)

where the various nonzero components are the partial derivative of a force or
moment component X, Y , Z, K, M , or N with respect to a linear or angular
acceleration u̇, v̇, ẇ, ṗ, q̇ or ṙ (Fossen 2002, SNAME 1950). It should be
noted that the hydrodynamic system inertia matrix for an AUV will be positive
definite, and can be approximated by MA = MT

A.

In general, the added mass terms are a function of body shape, the direction
of motion, and (to a lesser extent) flow parameter such as Reynolds number
(White 1998). However, for a body of revolution it is possible to approximate
added mass terms by a strip theory synthesis, in which the flow at each section
is assumed to be locally two dimensional (Newman 1999). Strip theory can also
be used for the added mass terms due to control surfaces, if the two dimensional
geometry is approximated to a flat plate representing the foils. Unfortunately,
strip theory fails to give any estimate of the axial added mass in surge.

2.3. Hydrodynamic Computation, Background 13

Axial Added Mass

Inspired by (Triantafyllou & Hover 2003, Problem 11), we approximate the
vehicle hull shape by an ellipsoid for which the major axis is half the vehicle
length, Lpp, and the minor axis half the vehicle diameter, d. Blevins (1979)
gives the following empirical formula for the axial added mass of an ellipsoid:

Xu̇ = −m11 = −4̟ρπ

3

(
d

2

)3

, (2.11)

where ρ is the fluid density, and ̟ is an empirical parameter measured by
Blevins (1979) and determined by the fineness ratio, f , of the vehicle as shown
in Table 2.3 and Figure 2.7.

Lpp/d ̟ Lpp/d ̟

0.01 0.6348 1 .5 0.4557
0.1 0.6148 2 .0 0.4200
0.2 0.6016 2 .5 0.3908
0.4 0.5712 3 .0 0.3660
0.6 0.5447 5 .0 0.2956
0.8 0.5211 7 .0 0.2510
1.0 0.5000 10.0 0.2071

Table 2.3: Axial added mass parameter, ̟ (Blevins 1979)

0 1 2 3 4 5 6 7 8 9 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Fineness ratio, f = Lpp/d

̟

Figure 2.7: Axial added mass parameter (interpolated)

14 Chapter 2. Preliminaries

Crossflow Added Mass

The added mass for the body alone may be calculated with the aid of 2 dimen-
sional strip theory. For a body of revolution, the added mass per unit length is
according to Newman (1999) given as

ma,b(x) =
π d(x)2

4
ρ , (2.12)

and the contribution from a foil section, mounted normal to the axis of reference,
is given by by1

ma,f (x) =
π ρ

4

(
b(x)2 − d(x)2

b(x)

)2

, (2.13)

where b(x) is the foil span as a function of axial position x.

Added inertia, roll

If we assume that the relative smooth sections of the vehicle hull do not generate
any added mass in roll, and neglect the added mass generated by additional
equipment fitted to the hull (sonar, transponders etc.), the two dimensional
added mass in roll is considered to be the result of the control surfaces alone.
From Newman (1999), the contribution from each section is given by

ma(x) =
ρ d4

16

((
2 α2 − α sin 4α + 1

2 sin2 2α
)
· csc4 α

π
− π

2

)

, (2.14)

where sinα = 2 d b/
(
d2 + b2

)
and π/2 < α < π; csc(·) = 1/ sin(·) is the

cosecant function.

Coupling terms and added inertia

Even though it might-be possible to obtain an ”exact” solution of these terms by
integrating the appropriate added mass term(s) with the proper moment arm, it
is usually easier to obtain an estimate of the solution by numerical integration;
dividing the body into a finite number, N , of discrete panels and summing the

1(2.13) is a modified version of the expression given in (Newman 1999, Table 4.3). The
contribution from the cylindrical section is removed, due to the fact that it has already been
accounted for in (2.12).

2.3. Hydrodynamic Computation, Background 15

contribution from each panel, yields an estimate of the total. Thus,

Mẇ = Zq̇ ≃
N−1∑

i=1

(x̂ − xm) · δx mxy
i(x̂) , (2.15a)

Mq̇ ≃ −
N−1∑

i=1

(x̂ − xm)2 · δx mxy
i(x̂) , (2.15b)

Nv̇ = Yṙ ≃ −
N−1∑

i=1

(x̂ − xm) · δx mxz
i(x̂) , (2.15c)

Nṙ ≃ −
N−1∑

i=1

(x̂ − xm)2 · δx mxz
i(x̂) , (2.15d)

where
x̂ =

xi + xi+1

2
, δx = xi+1 − xi ,

and the different mi terms are the the sum of (2.12) and (2.13)2. Note that
in (2.15), we have written the equations in such a way that we can define the
origin of x̂ at the nose vertex (positive aft); the transformation into the body
frame is ensured through xm, the distance from the nose vertex to the body
fixed origin (positive aft). It should also be noted that we have assumed that
the body fixed reference point is along the axis of revolution.

2The dimension to be used (b and d), are the one that appears at x̂, if we look at a cross-
section of the body through the plane indicated by the superscript of mi. If no foil is present,
b = d.

Chapter 3

Lift and Drag

In this chapter, a method for calculating lift, drag and hydrodynamic derivatives
for a typical AUV is presented. The theory and expressions are mainly based
on empirical methods from The USAF Stability and Control Datcom (Datcom
1978), and references therein.

Datcom is a data compendium for determination of aircraft stability properties.
It can deal with a broad scope of aircraft shapes, some of which bear a strong
resemblance to typical AUV’s. The major difference between aircrafts and un-
derwater vehicles is the medium which they operate. Differences in operating
medium which must be accounted for are principally those due to density and
viscous effects. Since these, in general, are well identified in Datcom, it is partic-
ulary easy to account for them when applying the methodology for underwater
vehicles. Essentially, density effects are removed by non-dimensionalization of
the variables, compressibility effects are ignored and viscousity effects are ac-
counted for through the Reynolds number at which the vehicle operates, i.e.

Rn =
U L

ν

The kinematic viscosity, ν, for water is about one order of magnitude smaller
than that of air, while the speed (U) of a typical AUV is in the order of two
magnitudes smaller than typical a subsonic aircraft. In addition, the length (L)
of an AUV is in the order of one magnitude smaller than a typical aircraft; thus,
the Reynolds number for a typical AUV is comparable to that of an airplane in
the lower subsonic range.

Datcom (1978) typically use the wing planform area as its reference area for the
nondimensional coefficients, while most standard equations for marine vessels
use the square of the vehicle body length (SNAME 1950). In this text, however,
the equations has been rewritten into standard notation for submerged bodies.

The theory presented in this chapter only deals with the vertical plane, but it
should be clear that same theory is applicable for the corresponding derivatives
as a function of sideslip, β, in the horizontal plane.

17

18 Chapter 3. Lift and Drag

3.1 Lift

Control of an AUV can be achieved by providing an incremental lift force on
one or more of the AUV’s lifting surfaces. Because the movable lifting surfaces
are located at some distance from the center of gravity, the incremental lift force
creates a moment about the center of gravity. Pitch and yaw control can be
achieved by changing the lift on the control surfaces (elevator and rudder), and
roll control can be achieved by deflecting the control surfaces in a differential
manner.

3.1.1 Foil alone

Lift on a foil at angle of attack results from the distributed pressure over the
surface of the foil. Most of the lift from a foil is derived from a region of
low pressure on the upper surface near the leading edge. The magnitude and
distribution of this pressure field is such that its integrated value over the foil
surface results in a force vector which is nearly perpendicular to the free-stream
direction (Hoerner 1985).

In a typical AUV design, it is common to use control surfaces with low-aspect
ratio (Ae). For these low aspect-ratio foils, experimental results shows that
they have a relatively high stall angle of attack (20− 25◦) and a very ”flat” stall
(Jones 1952, Nahon 1996, Whicker & Fehlner 1958); that is, their lift coefficient
stops rising but do not drop much past the stall point. It is also known that the
characteristic of the lift curve slope, CLα = ∂CL

∂α , is essentially linear with angle
of attack until stall occurs (Abbot & Doenhoff 1959).

If experimental data are available, it is normally recommended that these data
are used to obtain the three dimensional lift-curve slope (Datcom 1978, Abbot
& Doenhoff 1959); for low aspect-ratio foils, McCormick (1995) recommend the
expression given by (3.1a). Whicker & Fehlner (1958) also provide an expression,
(3.1b), which has proven to yield results that are very close to experimental data.
Note that in (3.1b), only geometric properties are necessary for calculating the
three dimensional lift-curve slope.

CLα =
AeAe + 2Ae+4Ae+2

clα (3.1a)

CLα =
Se

L2
pp

· 2 π κAe

2κ +

√ A2
e

cos4 Λc/4
+ 4

, (3.1b)

In (3.1), clα is the two-dimensional lift curve slope obtained from experimental
results, i.e (Abbot & Doenhoff 1959), Ae is the aspect ratio of the exposed
foil, Se is the planform area of the exposed foil, Λc/4 is the sweep angle at one
fourth of the chord, and κ = 0.9 is ”the section lift-curve slope corrected from

experimental observations” (Whicker & Fehlner 1958).

3.1. Lift 19

3.1.2 Body alone

The method presented in Datcom to estimate the lift curve slope for a body of
revolution, is based on potential theory. Potential theory is limited to angles of
attack near zero, where viscous effects are small. At higher angles of attack the
viscous forces become increasingly important, and should be taken into account.

From Datcom (1978), the lift-curve slope for a body of revolution is given by

CLα =
2 · (k2 − k1) ·S0

L2
pp

[1/rad] , (3.2)

where (k2 − k1) is the apparent mass factor developed by Munk (1934) and
presented in Figure 3.1 as a function of body fineness ratio (f =

Lpp

d). S0 is the
body cross-sectional area at the point (x0) where the flow ceases to be potential.
As shown in Figure 3.2, experimental results indicate that x0 appears at the
junction of the nose and the cylindrical midbody for a torpedo shaped vehicle;
thus, S0 = π d2

4 . For a streamlined vehicle, however, x0 is a function of x1, the

body station where the slope of the curve of revolution, dr(x)
dx , first reaches its

maximum negative value (Datcom 1978, Paster 1986). The relationship between
x0 and x1 is given in Figure 3.3.

Figure 3.1: Apparent mass factor (Munk 1934)

3.1.3 Foil- body combination

When a lifting surface is added to a body, certain mutual interference effects
may arise between the components. Datcom (1978) present a method, that
builds on the methodology derived in Pitts, Nielsen & Kaattari (1957). The key
idea is to compute interference factors between the lift surfaces and the body
using slender-body theory. The first step in the procedure assumes that fins do
not deflect, the effect of deflection is taken into account in Step 2.

Step 1

If we look at the foil-body combination as a unit (foil incidence is fixed relative
to the body), and the angle of attack is varied for the foil-body combination as

20 Chapter 3. Lift and Drag

Figure 3.2: Pressure distribution of typical torpedo (Paster 1986)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x1
Lpp

x0
Lpp

x0
Lpp

= 0.378 + x1
Lpp

Figure 3.3: Body station where flow cease to be potential

3.1. Lift 21

a unit, the equation for the fin- body lift curve slope (based on L2
pp) is given by

(CLα)FB = (CLα)B + (CLα)F (B) + (CLα)B(F) (3.3)

where (CLα)B is the bare hull lift coefficient given by (3.2), and

(CLα)F (B) = KF (B) · (CLα)F (3.4a)

(CLα)B(F) = KB(F) · (CLα)F . (3.4b)

(CLα)F is the lift curve slope for the foil alone, given by (3.1), and the quantities
KF (B) and KB(F) represents the ratios of the foil lift in the presence of body,
and the body lift in presence of the foil, respectively, to the foil alone lift. So
far, only a way of representing lift result has been represented. The solution of
a problem requires a determination of each of these ratios.

Lift on foil in presence of body From slender body theory, the expression
for KF (B) is according to Pitts et al. (1957) given by

KF (B) =
2

π

(
1 + ς4

) {
1
2 arctan

(
1
2 (ϑ − ς)

)
+ π

4

}

(1 − ς)2

− ς2 (ϑ − ς) + 2 arctan ς

(1 − ς)2
,

(3.5)

where ς is the diameter-span ratio (d/b), and ϑ = ς−1. In the limiting
case of ς = 0 the combination is all foil and the value of KF (B) = 1. As
ς approaches unity, there is a very small exposed foil. For this small foil,
the body is effectively a vertical reflection plane and the angle of attach
is 2α (Pitts et al. 1957); this makes KF (B) = 2.

Lift on body due to foil The slender body theory value of KB(F) is, accord-
ing to Pitts et al. (1957), given by

KB(F) =

(
1 − ς2

)2

(1 − ς)2
− 2 Θ

π
, (3.6)

where

Θ =

(
1 + ς4

) (
1
2 arctan 1

2 (ϑ − ς) + π
4

)
− ς2 (ϑ − ς + 2 arctan ς)

(1 − ς)2
.

In the limiting case of ς = 0 the combination is all foil and KB(F) = 0. As
ς approaches unity, there is a very small exposed foil. For this small foil
the lift on the body due to the foil is the same as the lift on the foil itself.
Thus, KB(F) = KF (B) = 2.

22 Chapter 3. Lift and Drag

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

d/b

KB
(F

)

KF(B)

Figure 3.4: Lift ratios KF (B) and KB(F) (Slender body theory)

Step 2

If we look at the body fixed at zero angle of attack and the foil incidence varying,
the equation is given by

(CLδ
)FB =

[
kF (B) + kB(F)

]
· (CLα)F , (3.7)

where kF (B) and kB(F) are interference factors given by

π2 · kF (B) =
π2

4

(ϑ + 1)2

ϑ2
+

π
(
ϑ2 + 1

)2

ϑ2 (ϑ − 1)2
arcsin

ϑ2 − 1

ϑ2 + 1
− 2 π (ϑ + 1)

ϑ (ϑ − 1)
(3.8a)

+

(
ϑ2 + 1

)2

ϑ2 (ϑ − 1)2
arcsin2 ϑ2 − 1

ϑ2 + 1
− 4 (ϑ + 1)

ϑ (ϑ − 1)
arcsin

ϑ2 − 1

ϑ2 + 1

+
8

(ϑ − 1)2
ln

ϑ2 + 1

2 ϑ
,

kB(F) = KF (B) − kF (B) , (3.8b)

where KF (B) is given by (3.6), and the value of kF (B) so obtained is presented
in Figure 3.5.

3.2 Drag

Drag is the hydrodynamic force exerted on a body in the direction opposite to
its velocity. The propulsion power requirement is proportional to the drag, times
the velocity, divided by the propulsion efficiency. Drag is usually considered to

3.2. Drag 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Diameter− span ratio, (d/b)

k
W(B)

Figure 3.5: Lift ratio, kF (B), based on slender body theory

consist of two components (Paster 1986); friction drag, which is a function of
speed and wetted area, and pressure drag (also called form drag), which is a
function of shape and frontal area.

Friction drag is caused by shearing stress caused by the boundary layer, which
arises from the resistance of the viscous fluid to the motion of the body passing
through it. The amount of viscous resistance depends greatly on whether the
flow is laminar or turbulent. The Reynolds number and the shape of the pressure
disturbance determine whether the flow over the foil is laminar or turbulent (or
a mixture of both).

According to the well known paradox of d’Alembert, the pressure drag is zero
for a closed body immersed in an inviscid fluid. For a viscous fluid, however,
there is a finite drag; resulting from an incomplete pressure recovery at the end
of the body, which in turn is caused by the displacement of the boundary layer
(see Figure 3.2). This drag is ”small” for bodies with high fineness-ratios, f , but
might become significant for blunt bodies (White 1998, Paster 1986).

24 Chapter 3. Lift and Drag

3.2.1 Body alone

If we assume that there is a turbulent boundary layer condition over the entire
surface, the zero-lift drag for an isolated body, based on L2

pp, is given by

CD0 =







Cf

[

1 +
60 d3

L3
pp

+ 0.0025
Lpp

d

]
4 Sb

π d2

︸ ︷︷ ︸

(Cf)b

+CDb







π d2

4 L2
pp

, (3.9)

where (Cf)b is the zero-lift drag of the body (exclusive base drag), Cf is the skin
friction coefficient (explained below), Lpp is the length between perpendiculars,
d is the maximum diameter of the body, Sb is the body wetted area (excluding
the base area), and CDb

is the base drag coefficient, given by

CDb
=

0.029
√

(Cf)b

·
(

db

d

)3

, (3.10)

where db is the base diameter. The term 0.0025
Lpp

d in (3.9) represent the pressure
drag contribution.

An estimate of the skin friction coefficient, Cf , may be obtained with the aid of
the ”Schoenherr Mean Line”

0, 242
√

Cf

= log (Rn Cf) , (3.11)

or the ”ITTC-1957 ” line

Cf =
0.075

(log (Rn) − 2)2
(3.12)

(Journée & Massie 2001).

3.2.2 Foil alone

In Datcom (1978), the foil zero-lift drag coefficient, based on L2
pp, is given by

CD0 = Cf

[

1 + L

(
t

c

)

+ 100

(
t

c

)4
]

RLS
Swf

L2
pp

, (3.13)

where:

Cf is the turbulent flat plate coefficient as a function of the Reynolds number
based on the mean hydrodynamic chord, c̄.

t
c is the average streamwise thickness ratio of the foil.

L is the hydrofoil thickness location parameter. (L = 1.2 for (t/c)max located
at xt ≥ 0.3 c. L = 2.0 for (t/c)max < 0.3 c).

3.2. Drag 25

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
−4

10
−3

10
−2

10
−1

10
0

ITTC−1957
Schoenherr

Rn

Cf

Figure 3.6: Friction drag

xt is the chordwise position of maximum thickness.

Swf is the wetted area of the foil.

RLS is the lifting surface correction factor obtained from Figure 3.7, or esti-
mated by the polynomial

RLS = −0.993 θ2 + 2.004 θ + 0.061 ,

where θ = cos Λ(t/c)max
, and Λ(t/c)max

is the sweep angle at xt.

3.2.3 Foil- body combination

In Datcom (1978), the zero-lift drag coefficient for the combination is deter-
mined by adding the drag coefficients of the exposed components and applying
an interference correction factor to the skin friction and pressure-drag contribu-
tions. The component contributions of the foil and body are determined by the
methods described above.

If we neglect the reduction in wetted area, caused by mounting the foil(s) to the
body, the zero-lift drag coefficient of a foil-body combination, based on L2

pp, is
given by

(CD0)FB =

{

(CD0)F + (Cf)b

π d2

4 L2
pp

}

·RFB + CDb
· π d2

4 L2
pp

, (3.14)

where (CD0)F is the foil zero-lift drag coefficient given by (3.13), (Cf)b is the
skin friction and pressure drag for the body alone; given by (3.9), and CDb

is the

26 Chapter 3. Lift and Drag

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

cos Λ(t/c)max

R
L

S

Figure 3.7: Lifting surface correlation factor

base drag coefficient given by (3.10). RFB is a foil- body interference correlation
factor. Unfortunately Datcom do not provide data, for RFB, which is directly
applicable for a typical AUV design; but if we interpolate the data provided
(Datcom 1978, Figure 4.3.3.1-37), a numerical value RFB = 1.05 seems to be
reasonable.

3.3 Pitching moment, Cmα

Cmα is the change in the pitching moment due to change in angle of attack.
This term determines the longitudinal stability of the vehicle, and must be
negative in order to have a ”static stable” vehicle (Blakelock 1991). A static
stable vehicle is one that tends to return to its equilibrium condition after a
disturbance has occurred. A negative Cmα means that as as the angle of attack
increases positively, the pitching moment becomes more negative, tending to
decrease the angle of attack.

3.3. Pitching moment, Cmα 27

Body alone

The body pitching moment for angle of attack near zero (based on L3
pp), is given

by

(Cmα)B =
2 (k2 − k1)

L3
pp

·
∫ x0

0

dS(x)

dx
(xm − x) dx

m see (A.7)

=
xm CLα

Lpp
+ 2 (k2 − k1)

V0 − S0 x0

L3
pp

[1/rad] ,

(3.15)

where xm is the longitudinal distance from the nose of the body to the cho-
sen point of reference, S0 is the body cross-sectional area at x0, and V0 =
∫ x0

0
π
4 d2(x) dx. The other coefficients are defined in Section 3.1.2.

Foil in presence of body

The pitching moment for a foil in presence of the the body can be written as

(Cmα)F (B) =

(
xhc

Lpp

)

F (B)

(CLα)F (B) , (3.16)

where (CLα)F (B) is given by (3.4a), and

(
xhc

Lpp

)

F (B)

=
1

Lpp

(

xm − xle −
2yhc − d

2
tan Λle −

c̄

4

)

(3.17)

is the non-dimensional position of the hydrodynamic center relative to xm

(Roskam 1979); the other parameters are as defined in Chapter 2.2.1.

Body in presence of foil

From Datcom (1978), the pitching moment for the foil in presence of body is
given by

(Cmα)B(F) =

(
xhc

Lpp

)

B(F)

(CLα)B(F) , (3.18)

where (CLα)B(F) is given by (3.4b), and
(

xhc
Lpp

)

B(F)
is the non-dimensional po-

sition of the hydrodynamic center relative to xm. The procedure for estimating
the hydrodynamic contribution due to lift carryover of the foil on the body,
depends on the aspect ratio of the exposed foil, Ae, as described below.

Case Ae ≥ 4 . The hydrodynamic center contribution due to the lift carryover
of the foil on the body is obtained from the equation

(
xhc

Lpp

)

B(F)

=
xm − xle

Lpp
− cr

Lpp

(
1

4
+

b − d

2 cr
·Ξ · tan Λc/4

)

︸ ︷︷ ︸

x′

βA4

,
(3.19)

28 Chapter 3. Lift and Drag

where

Ξ =
−ς

1 − ς
+

√
1 − 2 ς ln

(
1−ς

ς +
√

1−2 ς
ς

)

− (1 − ς) + ς π
2

ς (1−ς)√
1−2 ς

ln
(

1−ς
ς +

√
1−2 ς
ς

)

+ (1−ς)2

ς − π (1−ς)
2

,

and ς = d/b is the diameter span ratio; the other parameters are as defined
in Chapter 2.2.1.

Case Ae < 4 The hydrodynamic center is obtained by interpolation1 between
βAe = 0 and βAe = 4. From slender body theory, the hydrodynamic
center for βAe = 0 (based on root chord length, cr) is given by

x′
βA0

=

{
1
2Γ , if 0 ≤ Γ < 1;
1
2 , otherwise .

, (3.20)

where

Γ =
Ae (1 + λ)

4
tan Λle ,

λ is the taper ratio, and Λle is the leading edge sweep angle.

Following the procedure suggested in Datcom, the estimate of the hydro-
dynamic center is determined from a curve through the value for βAe = 0
and tangent to the calculated line for βAe ≥ 4; thus,

(
xhc

Lpp

)

B(F)

=
xm − xle − cr · ℵ(βAe)

Lpp
, (3.21)

where

ℵ(βAe) =
x′

βA0
− x′

βA4

16
(βAe − 4)2 + x′

βA4
.

Pitching moment - foil body combination, (Cmα)FB

The curve slope for the foil-body combination is estimated by

(Cmα)FB =

(
xhc

Lpp

)

FB

(CLα)FB

= (Cmα)B + (Cmα)F (B) + (Cmα)B(F) ,

(3.22)

where (CLα)FB is the lift curve-slope for the foil-body combination, obtained

from (3.3), and
(

xhc
Lpp

)

FB
is the non-dimensional position of the hydrodynamic

center relative to the point of reference, xm.

1In Datcom (1978), the procedure is based on the Prandtl-Glauert compressibility factor,
β =

√

|1 − M2|, multiplied by the aspect ratio of the exposed foil, Ae; for all practical AUV
applications, β = 1 (Nahon 1993).

3.4. Pitching moment, Cmδ
29

3.4 Pitching moment, Cmδ

Cmδ
is the change in pitching moment due to rudder deflection, and is obtained

by

(Cmδ
)FB =

((
xhc

Lpp

)

B(F)

kB(F) +

(
xhc

Lpp

)

F (B)

kF (B)

)

(CLα)F , (3.23)

where (CLα)F is the lift curve slope for the foil alone, given by (3.1),
(

xhc
Lpp

)

B(F)

and
(

xhc
Lpp

)

F (B)
are the hydrodynamic centers defined above; kB(F) and kF (B)

are the interference factor defined by (3.8).

3.5 Pitching derivative, CLq

When a foil-body combination rotates in pitch about a given center of gravity
at an angular velocity, q, in a free-stream velocity v∞, changes in local angle
of attack that are proportional to the local vertical disturbance vector, wr, are
produced. As a result, an effective angle of attack increment for the complete
combination is produced, resulting in a lift increment.

Foil alone

The equation for estimating the pitching derivative, based on L3
pp, is given by

CLq =
1

Lpp

(c̄

2
+ 2 (xhc − xm)

)

CLα , (3.24)

where c̄ is the mean hydrodynamic chord, xhc − xm is the longitudinal distance
from the hydrodynamic center of the foil to the point of reference (positive aft),
and CLα is the foil lift curve slope given by (3.1).

Body alone

The method presented in Datcom for estimating the body contribution to CLq ,
is based on slender body theory. Based on L3

pp, and referred to the center of
rotation, the body contribution to CLq is given by

CLq = 2CLα

(

1 − xm

Lpp

)

· Sbase

L2
pp

, (3.25)

where CLα is the body lift curve slope given by (3.2), Sbase is the base area,
and xm is the longitudinal distance from the body nose vertex to the center of
rotation, positive aft.

30 Chapter 3. Lift and Drag

Foil-body combination

For a typical AUV design, the method presented in Datcom (1978) for estimating
the pitching derivative for a foil body configuration, based on L3

pp, is given by

(
CLq

)

FB
=

[
KF (B) + KB(F)

] (
CLq

)

F
+

(
CLq

)

B
, (3.26)

where

KF(B) and KB(F) are the appropriate foil-body interference factors obtained
from (3.5) and (3.6) respectively.

(
CLq

)

F
is the contribution from the foil, obtained from (3.24).

(
CLq

)

B
is the contribution from the body to the pitching derivative, obtained

from (3.25).

3.6 Pitching derivative, Cmq

As a result of the lift increment, CLq , a pitching moment increment Cmq is
produced. The derivative is a measure of the pitching moment produced by
rotational motion of the fluidframe about the spanwise axis, and is commonly
referred as the pitch-damping derivative (Datcom 1978).

Foil alone

The semi-empirical method, presented in Datcom, for estimating the pitching
increment for the foil alone (based on L4

pp) is given by

Cmq = −0.7 clα

c̄ 2

L4
pp

Υ cosΛc/4 , (3.27)

where

Υ =
Ae

(
x̄
2 c̄ + 2 x̄2

c̄ 2

)Ae + 2 cos Λc/4
+

1

24

(A3
e tan2 Λc/4Ae + 6 cos Λc/4

)

+
1

8
,

and
x̄

c̄
=

xhc − xm

c̄
, (3.28)

is the non-dimensional distance between the foil hydrodynamic center and the
point of reference (based on mean hydrodynamic chord, c̄). clα is the two-
dimensional lift curve slope, obtained from experimental results (e.g Abbot &
Doenhoff (1959)); or by the relation given in (3.1a). It should be noted that
(3.27) is strictly applicable for Ae ∈ (1, 6). For aspect-ratios not in this range,
the empirical factor, 0.7, should be modified according to the procedure recom-
mended in (Datcom 1978, Section 7.1.1.2)

3.7. Open loop transfer functions 31

Body alone

The body contribution to Cmq (based on L4
pp) is given by

Cmq = 2Cmα ·

(

1 − xm
Lpp

)2
·Sbase − V–

Lpp

(
xc−xm

Lpp

)

(

1 − xm
Lpp

)

·Sbase − V–
Lpp

, (3.29)

where Cmα is given by (3.15), V– is the total body volume, Sb is the base area
(area of the stern) and xc is the longitudinal distance from the nose to the
centroid of the volume:

xc =
1

V–

∫ Lpp

0
x S(x) dx .

Foil-body combination

For the foil-body configuration, the pitching derivative Cmq , based on L4
pp and

referred to the moment center, xm, is given by
(
Cmq

)

FB
=

(
KF (B) + KB(F)

)
·
(
Cmq

)

F
+

(
Cmq

)

B
, (3.30)

where
(
Cmq

)

F
is given by (3.27),

(
Cmq

)

B
is given by (3.29), KF (B) and KB(F)

are the interference factors obtained from (3.5) and (3.6) respectively.

3.7 Open loop transfer functions

To study the dynamics for an AUV in the vertical plane, it is sufficient to
compute and analyze the transfer functions from stern plane deflection to pith
and heave motions2 (Barros et al. 2004). If we neglect the surge equation, and
take the Laplace transform of α, θ, and δ, the nondimensional linearized models
in the vertical plane (about steady forward motion at trimming speed) are given
by

(
(m′−Z′

ẇ) Lpp

U s − Z ′
α

)

α(s) −
(

(Z′

q̇+m′ x′

G) L2
pp

U2 s2 +
(Z′

q+m′) Lpp

U s

)

θ(s) = CLδ
δ(s) (3.31)

and
(

(I′yy−M ′

q̇) L2
pp

U2 s2 − (Cmq−m′ x′

G) Lpp

U s − M ′
θ

)

θ(s) −
(

(M ′

ẇ+m′ x′

G) Lpp

U s + Cmα

)

α(s) = Cmδ
δ(s) , (3.32)

where the prime denotes the nondimensional value of the parameters involved
(see Table 3.1 for additional information). Finally, if we let ż′(s) = s z′0(s)
denote the Laplace transform of the depth rate in non dimensional form, the
linearized depth rate about trimming is given by

ż′(s) = α(s) − θ(s) . (3.33)

The transfer functions α
δ (s) and θ

δ (s) are provided in Appendix A.5.

2Note that all equations and theory, and most of the text in this section, is adopted directly
from the work of Barros et al. (2004).

32 Chapter 3. Lift and Drag

Parameter Description Parameter Description

m′ = m
0.5 ρL3

pp
Vehicle mass Z ′

ẇ = Zẇ
0.5 ρL3

pp
Added mass

Zα = −(CD0 + CLα) Body fixed drag Z ′
q̇ =

Zq̇

0.5 ρL4
pp

Added mass cross term

x′
G = xG

Lpp
Coordinate of CG Z ′

q = −(CLq + X ′
u̇) Pitch-der. + added mass

z′G = zG
Lpp

Coordinate of CG I ′yy =
Iyy

0.5 ρL5
pp

Rigid body inertia

M ′
q̇ =

Mq̇

0.5 ρL5
pp

Added inertia M ′
ẇ = Mẇ

0.5 ρL4
pp

Added mass cross term

M ′
θ = −m g zG

0.5 ρ L3
pp U2 Pitching stability X ′

u̇ = Xu̇
0.5 ρL3

pp
Axial added mass

Table 3.1: Nondimensional parameters, open loop transfer function

3.8 Discussion

In this chapter, we have presented theory necessary to investigate the expected
performance of a typical AUV in the vertical plane. The expressions obtained
are mainly based on Datcom (1978), which systematically has proven to yield
expressions for lift, drag and hydrodynamic derivatives, for the foil-body com-
bination. For an AUV, which typically have a similar configuration of control
surfaces in the horizontal and vertical plane, it should be apparent that the
theory presented in this chapter also could be used in the horizontal plane, by
calculating the corresponding derivatives as a function of sideslip, β.

From Figure 3.4, it is seen that the mutual interference effects between the
lifting surfaces and the body may be significant; this is especially true for an
AUV, where the lifting surfaces typically are small in relation to the body size.
It is therefor important to include the lifting-surface/body combination as units
rather than in isolation.

Regarding (3.1b), it should be noted that some authors use the ”extended aspect
ratio” to calculate the lift-curve slope. However, to the best of the author’s
knowledge, Whicker & Fehlner (1958) do refer to the exposed area in their
original formulation.

Datcom (1978) also include a systematic procedure for taking into account the
effect of trailing vortices from a front ”wing”, and how it influence the effec-
tiveness of the control surfaces at the stern; however, due to the vehicle to be
considered, MAYA, the theory presented has been limited to vehicles with one
set of control surfaces (in each plane). Datcom, do not provide theory that is
applicable for investigating the interference between the body and duct, and
therefore it has not been investigated.

Chapter 4

Example

In this chapter, a numerical example for a torpedo shaped AUV is presented.
The example is based on the work of Barros et al. (2004), and is restricted to
motion in the vertical plane (small perturbations). Furthermore, the example
is linearized around a velocity Uo =

√
u2 + v2 + w2 = 1.5m/s. The shape of the

vehicle considered is identical to the vehicle which is planned to undergo towing
tank experiments in the Marine Cybernetics Laboratory1 during the fall of 2004.

4.1 Vehicle

Before we proceed with calculation of the hydrodynamic derivatives, we will
define the geometry of the vehicle, and calculate various parameters needed in
calculations.

Body

The geometry of the body is given by the parameters in Table 4.1. Inserting
numerical values into (2.4), (2.5) and (2.6), yields

r(x) =







0.20
2

(

1 −
(

x−0.20
0.20

)2
) 1

3.0
, 0 ≤ x ≤ 0.20

0.20
2 , 0.20 < x ≤ 1.40

rt(x) , 1.40 < x ≤ 1.640

, (4.1)

where

rt(x) =
0.20

2
−

(
3 · 0.20

2 · (1.640 − 1.40)2
− tan 25.0◦

1.640 − 1.40

)

(x − 1.40)2

+

(
0.20

(1.640 − 1.40)3
− tan 25.0◦

(1.640 − 1.40)2

)

(x − 1.40)3 .

1Marine Cybernetics Laboratory is a laboratory which is a joint facility between department
of Engineering Cybernetics and department of Marine Technology at the Norwegian University
of Science and Technology (NTNU), and Marintek (Fossen 2004b).

33

34 Chapter 4. Example

d 0.20m
L 1.640m
Lpp 1.640m
a 0.20m
b 1.40m
n 3.0
θ 25.0◦

Table 4.1: Body parameters (MAYA)

Foil

The vehicle is equipped with a NACA 0012 foil section (mounted in the xy-
plane), where the normalized cross-sectional curvature of the profile is given by
(Abbot & Doenhoff 1959)

ŷ(̺) =
±0.12

0.2

(
0.2969

√
̺ − 0.126̺ − 0.3516̺2 + 0.2843̺3 − 0.1015̺4

)
, (4.2)

where ̺ ∈ (0, 1). Numerical values for most of the parameters used in calcula-
tions are presented in Table 4.2.

Figure 4.1: Cross-section of a NACA 0012 profile

4.2 Hydrodynamic derivatives

4.3 Foil alone

CLα

Using equation (3.1), the three dimensional lift curve slope (based on L2
pp) is

calculated:

CLα =
Se

L2
pp

· 2 πAe

2 + 1
κ

√ A2
e

cos2 Λc/4
+ 4 cos2 Λc/4

=
1.80 · 10−2

1.6402
· 2 π · 3.20

2 + 1
0.90

√
3.202

cos2 Λc/4
+ 4 cos2 Λc/4

= 21.00 · 10−3
[
rad−1

]
.

(4.3)

4.3. Foil alone 35

Description Symbol Expression Value

Body

Displaced volume V– π
∫ Lpp

0 r2
(x) dx 45.76 · 10−3m3

Wetted area Sb 2 π
∫ Lpp

0 r(x) dx 0.95m2

Fineness ratio f
Lpp

d 8.20

Center of buoyancy xc
π
V–

∫ Lpp

0 x r2
(x) dx 0.781m

x0 a 0.20m

S0
π d2

4 3.14 · 10−2m2

V0

∫ x0

0 π r2
(x) dx 4.64 · 10−3m3

Base diameter db 2 · r(Lpp) 0.0m

Base area Se
πd2

b
4 0.0m2

Foil

Foil span b 0.44m

Root chord cr 0.09m

Tip chord ct 0.06m

Leading edge xle 1.255m

Taper ratio λ ct
cr

0.67

Exposed foil area Se
(b−d) cr (1+λ)

2 1.80 · 10−2m2

Wetted area, foil Swf Se ·
∫ 1
0

√

ŷ(̺)2 + ̺2 d̺ 3.67 · 10−2m2

Aspect ratio Ae
(b−d)2

Se
3.20

Sweep angle at c/2 Λc/2 0.0◦

Sweep angle at c/4 Λc/4 arctan 4 · 0.25Ae
· 1−λ

1+λ 3.58◦

Sweep angle, leading edge Λle arctan 4 · 0.5Ae
· 1−λ

1+λ 7.13◦

Average thickness ratio t
c 2 ·

∫ 1
0 ŷ(̺) d̺ 0.082

Table 4.2: MAYA particulars

36 Chapter 4. Example

CLq

In order to calculate the pitching derivative (3.24), the hydrodynamic center of
the foil configuration need to be determined. It is known that the cross-sectional
hydrodynamic center is located at c/4 for a NACA-0012 configuration (Abbot &
Doenhoff 1959, Datcom 1978). Furthermore, the spanwise location of the mean
hydrodynamic chord, yhc, is equivalent to the spanwise location of the centroid
of area, which can be expressed as (Roskam 1979)

yhc =
b − d

2
+

(1 + 2λ)(b − d)

6 (1 + λ)

= 0.156m .

(4.4)

Thus, it is seen from Figure 4.2 that the hydrodynamic center of the foil alone
is given by

xhc,f = xle +
2 yhc − d

2
tan Λle +

c̄

4
= 1.255m + 0.007m + 0.019m

= 1.281m ,

(4.5)

where c̄ = 0.076m is the chord-length at yhc.

Using (3.24), the pitching derivative for the foil alone (based on L3
pp) is calcu-

lated:

CLq =
1

Lpp

(c̄

2
+ 2 (xhc,f − xm)

)

CLα

=
1

1.640

(
0.076

2
+ 2 · (1.281 − 0.781)

)

· 21.00 · 10−3

= 13.30 · 10−3
[
rad−1

]
.

(4.6)

Cmq

Noting that the aspect-ratio of the exposed foil,Ae, is in the range where (3.24)
is applicable, a numerical estimate for Cmq (based on L4

pp) for the foil alone is
obtained by

Cmq = −0.7 clα

Se · c̄ 2

L4
pp

Υ cos Λc/4

= −0.7 · 6.30 · 1.80 · 10−2 · 0.0762

1.6404
· 55.6 · cos Λc/4

= −3.52 · 10−3
[
rad−1

]
,

(4.7)

where Υ = 55.6 (see Chapter 3.6).

4.3. Foil alone 37

xle xhc,f

c/
4

c̄
yhc

d
2

b
2

Λle

Figure 4.2: Hydrodynamic center foil

CD0

The average thickness ratio, t/c, of the NACA-0012 foil section is simply the
area of (4.2):

t

c
= 2 ·

∫ 1

0
ŷ(̺) d̺ ≃ 0.082 . (4.8)

Solving the equation dŷ(̺)
d̺ = 0, with respect to ̺, yields the chordwise position

of maximum thickness, xt ≃ 0.300, which determines the numerical value of the
hydrofoil thickness location parameter, L = 1.2. The lifting surface correction
factor RLS = 1.07 is obtained from Figure 3.7 (for cos 2.86◦ ≃ 1.00). The
turbulent flat plate coefficient, Cf = 0.009, is obtained from Figure 3.6 for a
Reynolds number, Rn = Uc̄/ν = 7.31 · 104, based on the mean hydrodynamic
chord, c̄ = 0.076m, advance speed U = Uo = 1.5m/s, and a kinematic viscosity
ν = 1.56 · 10−6 (water with 5% salinity at 5◦C).

38 Chapter 4. Example

Inserting numerical values into (3.13), yields:

CD0 = Cf

[

1 + L

(
t

c

)

+ 100

(
t

c

)4
]

RLS
Swf

L2
pp

= 0.009 ·
[
1 + 1.2 · 0.082 + 100 · 0.0824

]
· 1.07 · 3.67 · 10−2

1.6402

= 14.75 · 10−5
[
rad−1

]
.

(4.9)

4.3.1 Summary

Parameter Value k Description
CLα 21.00 · 10−3 2 Lift curve slope
CLq 13.30 · 10−3 3 Pitching derivative
Cmq −3.52 · 10−3 4 Pitching derivative
CD0 14.75 · 10−5 2 Zero lift drag

Table 4.3: Foil alone, hydrodynamic coefficients (based on Lk
pp)

4.4 Body alone

CLα

For a fineness ratio, f = Lpp/d = 8.20, the apparent mass factor, k2−k1 = 0.91,
is obtained from Figure 3.1. As discussed in Chapter 3.1.2, the cross-sectional
area at the point where the flow cease to be potential, for a torpedo shaped
vehicle, is given by

S0 =
πd2

4
≃ 3.14 · 10−2m2 . (4.10)

Then, using (3.2), the lift curve slope (based on L2
pp) for the body alone is

calculated:

CLα =
2 · (k2 − k1) ·S0

L2
pp

=
2 · 0.91 · 3.14 · 10−2

1.6402

= 21.33 · 10−3 [rad−1] .

(4.11)

CLq and Cmq

As can be seen from (4.1), the base area of the vehicle, Sbase, is zero; thus, from
(3.25) and (3.29) it follows that the contribution for the body alone to CLq and
Cmq is zero.

4.5. Foil body combination 39

CD0

From Figure 3.6, for a Reynolds number, Rn = ULpp/ν = 1.58 · 106, based on
Lpp = 1.640m, advance speed U = Uo = 1.5m/s, and a kinematic viscosity ν =
1.56 · 10−6 (water with 5% salinity at 5◦C), the turbulent flat plate coefficient,
Cf = 4.256 · 10−3, is obtained. Because the base diameter (db) is zero, there
is no contribution from the ”base” to the total body drag (CDb

= 0). From
Table 4.2 we obtain the wetted area of the body, Sb = 0.95m2, and referring to
(3.9), the zero-lift drag of the body is

(
CDf

)

b
= Cf

[

1 +
60 d3

L3
pp

+ 0.0025
Lpp

d

]
4 Sb

π d2

= 4.256 · 10−3 ·
[

1 +
60 · 0.203

1.6403
+ 0.0025 · 1.640

0.20

]

· 4 · 0.95

π · 0.202

= 14.52 · 10−2
[
rad−1

]
.

(4.12)

Thus, inserting numerical values into (3.9), yields an estimate of the zero-lift
drag coefficient (based on L2

pp):

CD0 =
{(

CDf

)

b
+ CDb

}

· π d2

4 L2
pp

= 1.70 · 10−3
[
rad−1

]
.

(4.13)

4.4.1 Summary

Parameter Value k Description
CLα 21.33 · 10−3 2 Lift curve slope
Cmα 9.47 · 10−3 3 Pitching moment
CLq 0.0 3 Pitching derivative
Cmq 0.0 4 Pitching derivative
CD0 1.70 · 10−3 2 Zero lift drag

Table 4.4: Body alone, hydrodynamic coefficients (based on Lk
pp)

4.5 Foil body combination

Before we proceed with the calculation of the combination, we define

(CLα)F (B) = KF (B) (CLα)F (4.14a)

= 1.40 · 21.00 · 10−3

= 29.5 · 10−3

(CLα)B(F) = KB(F) (CLα)F (4.14b)

= 0.71 · 21.00 · 10−3

= 14.9 · 10−3 ,

40 Chapter 4. Example

where the interference factors are obtained from Figure 3.4, with numerical
values given in Table 4.5.

Parameter Value Source
KF (B) 1.40 Figure 3.4
KB(F) 0.71 Figure 3.4
kF (B) 0.94 Figure 3.5
kB(F) 0.47 Equation (3.8b)

Table 4.5: Interference factors (ς = d/b = 0.45)

CLα

From (3.3), the lift curve slope for the combination is

(CLα)FB = (CLα)B + (CLα)F (B) + (CLα)B(F)

= 21.33 · 10−3 + 29.5 · 10−3 + 14.9 · 10−3

= 65.76 · 10−3
[
rad−1

]
.

(4.15)

CLδ

From (3.7), the lift due to foil deflection is

(CLδ
)FB =

[
kF (B) + kB(F)

]
· (CLα)F

= [0.94 + 0.47] · 21.00 · 10−3

= 29.48 · 10−3
[
rad−1

]
,

(4.16)

where the interference factors are obtained from Table 4.5.

Cmα

Body alone Inserting numerical values into (3.15), yields an estimate (based
on L3

pp) of the body pitching moment:

(Cmα)B =
xm CLα

Lpp
+ 2 (k2 − k1)

V0 − S0 x0

L3
pp

=
0.781 · 21.33 · 10−3

1.640
+ 2 · 0.91 · 4.64 · 10−3 − 3.14 · 10−2 · 0.20

1.6403

= 9.47 · 10−3
[
rad−1

]
.

(4.17)

Foil in presence of body Inserting numerical values into (3.17), an estimate
of the hydrodynamic center of the foil in presence of the body is given by
(

xhc

Lpp

)

F (B)

=
1

Lpp

(

xm − xle −
2 yhc − d

2
tan Λle −

c̄

4

)

(4.18)

=
1

1.640

(

0.781 − 1.255 − 2 · 0.156 − 0.20

2
tan 7.13◦ − 0.076

4

)

= −0.305 .

4.5. Foil body combination 41

Using (3.16), the body pitching moment contribution is estimated as

(Cmα)F (B) = (CLα)F (B)

(
xhc

Lpp

)

F (B)

= 29.5 · 10−3 · − 0.305

= −9.00 · 10−3 .

(4.19)

Body in presence of foil In order to calculate the hydrodynamic center of
the body in presence of foil, we use the interpolation procedure described
in Chapter 3.3, and plot the result in Figure 4.3 as a function of βAe.
Then, for βAe = 3.20,

(
xhc
Lpp

)

B(F)
= −0.304.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.306

−0.304

−0.302

−0.3

−0.298

−0.296

−0.294

−0.292

−0.29

βAe

(
xhc
Lpp

)

B(F)

Figure 4.3: Plot of
(

xhc

Lpp

)

B(F)
versus βAe

Using (3.22), the total pitching moment for the combination is estimated as

(Cmα)FB = (Cmα)B + (Cmα)F (B) + (Cmα)B(F)

= 9.47 · 10−3 − 9.00 · 10−3 − 4.54 · 10−3

= −4.07 · 10−3
[
rad−1

]
.

(4.20)

42 Chapter 4. Example

Cmδ

Using (3.23), the pitching moment due to rudder deflection for the combination
is obtained by

(Cmδ
)FB =

((
xhc

Lpp

)

B(F)

kB(F) +

(
xhc

Lpp

)

F (B)

kF (B)

)

(CLα)F

= (−0.304 · 0.47 − 0.305 · 0.94) · 21.00 · 10−3

= −8.98 · 10−3
[
rad−1

]
.

(4.21)

CLq

The total lift moment increment for the combination, is calculated by inserting
numerical values into (3.26); thus

(
CLq

)

FB
=

[
KF (B) + KB(F)

] (
CLq

)

F
+

(
CLq

)

B

= [1.40 + 0.71] · 13.30 · 10−3 + 0

= 28.14 · 10−3
[
rad−1

]
.

(4.22)

Cmq

Inserting numerical values into (3.26), yields
(
Cmq

)

FB
=

(
KF (B) + KB(F)

)
·
(
Cmq

)

F
+

(
Cmq

)

B

= (1.40 + 0.71) · − 3.52 · 10−3 + 0

= −7.44 · 10−3
[
rad−1

]
.

(4.23)

CD0

The total skin friction drag for the combination, is estimated by inserting nu-
merical values into (3.14); thus

(CD0)FB =

{

(CD0)F + (Cf)b

π d2

4 L2
pp

}

·RFB + CDb
· π d2

4 L2
pp

=

{

14.75 · 10−5 + 14.52 · 10−2 · π · 0.202

4 · 1.6402

}

· 1.05 + 0 · π · 0.202

4 · 1.6402

= 1.94 · 10−3
[
rad−1

]
.

(4.24)

4.6. Added mass 43

4.5.1 Summary

Parameter Value k Description
CLα 65.76 · 10−3 2 Lift curve slope
CLδ

29.48 · 10−3 2
Cmα −4.07 · 10−3 3
Cmδ

−8.98 · 10−3 3
CLq 28.14 · 10−3 3 Pitching derivative
Cmq −7.44 · 10−3 4 Pitching derivative
CD0 1.94 · 10−3 2 Zero lift drag

Table 4.6: Hydrodynamic coefficients, foil body combination, (based on Lk
pp)

4.6 Added mass

Taking into account that we are only looking into the vertical plane, the added
mass matrix is written as

MA =





−Xu̇ 0 0
0 −Zẇ −Zq̇

0 −Mẇ −Mq̇



 , (4.25)

where the nonzero coefficients are estimated below. Using the assumption that
MA = MT

A, indicate that Mẇ = Zq̇.

As discussed in Chapter 2.3.3, an estimate of the added mass in surge might-be
obtained by fitting an ellipsoid within the hull. From Figure 2.7, for a fineness
ratio f = 8.20, we obtain ̟ = 0.23. Then from (2.11), the axial added mass
(surge) is estimated by

−Xu̇ =
4̟ρπ

3

(
d

2

)3

=
4 · 0.23 · 1025 ·π

3

(
0.20

2

)3

= 0.99kg .

Figure 4.4: Ellipsoid fitted within the hull

44 Chapter 4. Example

An estimate of the parameter Zẇ might be obtained by integrating (2.13) and
(2.13) over the length of the vehicle. However, due to the fact that is very diffi-
cult to obtain an explicit solution of the integral of (4.1), we will use estimates
obtained from hde (see Chapter 5 for more details) as a solution to the integral

−Zẇ =

∫ Lpp

0
ma,b(x) dx +

∫ Lpp+cr

Lpp

ma,f (x) dx

≃ 53.87kg .

In the same way as for Zẇ, we use the estimate from hde as the solution to the
other terms. The estimates are then

−Zq̇ = −Mẇ =
N−1∑

i=1

(x̂ − xm) · δx mxy
i(x̂)

≃ 4.06kg m ,

−Mq̇ =
N−1∑

i=1

(x̂ − xm)2 · δx mxy
i(x̂)

≃ 10.07kg m2 ,

where the coefficients are as defined in Chapter 2.3.3.

4.7 Open loop simulation

If we assume a neutrally buoyant vehicle, with m = 46.90kg, and a uniform den-
sity over the volume2. Then, if we non-dimensionalize the coefficients according
to Table 3.1, we obtain the non-dimensional coefficients in Table 4.7. Inserting
numerical values into the transfer functions (A.8) and (A.9) yields

α

δ
(s) =

1.2864 · s2 + 5.135 · s + 0.88884

1.7768 · s3 + 8.8697 · s2 + 10.1292 · s + 2.041

and
θ

δ
(s) =

−7.8856 · s + 5.135

1.7768 · s3 + 8.8697 · s2 + 10.1292 · s + 2.041
.

The expected performance of the vehicle in the vertical plane is shown in Fig-
ure 4.5 and 4.6, where the results are obtained from a step response simulation,
with δ = 1◦, at t′ = 5.

4.8 Discussion

In this chapter, we have analyzed the expected performance of the MAYA AUV.
The example is based on the work presented in Barros et al. (2004), but here
we have avoided the simplifications by using the transfer functions developed in
the previous chapter. From Figure 4.6, it is seen that the negative Cmα stabilize
the vehicles angle of attack.

2except for a point mass, necessary to obtain a meta-centric stable vehicle

4.8. Discussion 45

Parameter Description Parameter Description

m′ = 20.747 · 10−3 Vehicle mass Z ′
ẇ = −23.828 · 10−3 Added mass

Zα = −67.692 · 10−3 Body fixed drag Z ′
q̇ = −1.094 · 10−3 Added mass cross term

x′
G = 0 Coordinate of CG Z ′

q = −27.705 · 10−3 Pitch-der. + added mass
z′G = 12.195 · 10−3 Coordinate of CG I ′yy = 1.388 · 10−3 Rigid body inertia
M ′

q̇ = −1.657 · 10−3 Added inertia M ′
ẇ = −1.094 · 10−3 Added mass cross term

M ′
θ = −1.809 · 10−3 Pitching stability X ′

u̇ = −0.438 · 10−3 Axial added mass

Table 4.7: Nondimensional parameters, open loop transfer function

0 5 10 15 20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

Non dimensional time, t′ = t Uo
Lpp

N
on

di
m

en
si

on
al

de
pt

h
ra

te
,
ż
′

Figure 4.5: Open loop simulation, depth rate

46 Chapter 4. Example

0 10 20 30 40
−6

−5

−4

−3

−2

−1

0

0 10 20 30 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Non dimensional time, t′ = t Uo
Lpp

Non dimensional time, t′ = t Uo
Lpp

α (1◦) θ (1◦)

Figure 4.6: Open loop simulation, pitch and angle of attack

Chapter 5

Hydrodynamic software

5.1 Matlab Toolbox- hde

As a part of this work, a Matlab toolbox for hydrodynamic estimation of a
body of revolution has been developed. The application estimates the coeffi-
cients discussed in Chapter 3, for both the horizontal and vertical plane. In
addition, it also estimates properties such as added mass and rigid body dy-
namics (optional).

5.1.1 Running the application

Prior to running the application, the toolbox need to be loaded into your Mat-

lab search path. This is accomplished by running the hdeinstall.m script from
your Matlab Command Window (provided in Appendix D). Then, by typing
hde in the Matlab Command Window, a startup menu identical to Figure 5.1
appears.

Figure 5.1: hde- start menu

Load model from Open and edit a previous hde session.

New vertex model An interface where the user can place vertexes, which de-
termine the curve of revolution by cubic hermite interpolation. By pushing
the Create Geometry button, a body of ”any shape” can be drawn.

47

48 Chapter 5. Hydrodynamic software

New torpedo model An interface where the shape is determined by the Myring
(1976) parameters outlined in Section 2.2.2.

Figure 5.2: hde- Creating a vertex model

Adding a foil section

After the shape of the body has been specified and the Create Geometry button
has been pressed, foil sections are added by pushing the Add Foil button. Then a
dialog box, identical to Figure 5.3 appear, where all variables except for Density

are as defined in Chapter 2.2.1. Density is simply the density of the material
used in the foil sections (hde assumes aluminium by default).

Figure 5.3: hde- Foil dialog

5.1. Matlab Toolbox- hde 49

Specifying parameters

Referring to Figure 5.2 and 5.4, the other user defined options are as specified
in Table 5.1.

TAG Description

Auto calc Mrb If checked, hde automatically estimates the rigid body system
inertia matrix, MRB, assuming a neutrally buoyant vehicle.
Deselecting this checkbox makes it possible for the user to specify
the rigid body dynamics.

BG Desired metacentric height (assuming Auto calc Mrb is checked)
Auto calc Separation If checked, hde estimates the point where the flow cease to be

potential according to the theory presented in Section 3.1.2
Xsep Point where flow cease to be potential (relative to nose vertex)
Kinematic visc Kinematic viscosity, ν, used in calculations
Velocity (u) Velocity used in estimation of linearized derivatives
Add Vertexes Used to place vertexes which determine the shape of a vertex model
Edit Vertexes Opens a dialog box, where the user can edit the coordinates of

vertexes
Lpp Length between the perpendiculars, Lpp

L Myring parameter as outlined in Section 2.2.2
Ln Length of nose section, a
Lt Distance from nose vertex to the start of the tail, b
D Diameter of body, d
theta Half of the included tail angle, θ
n Parameter which determines the shape of the nose
Run Application Estimate lift, drag, added mass etc.
Help Executes the hde toolbox help functions
Generate Report Automatically generate a report of the estimated parameters and

derivatives (requires MikTex (2003) to be installed)

Table 5.1: hde- user defined parameters

5.1.2 Viewing the output

There are two different ways to view and analyze the output from hde, in Mat-

lab and in an automatically generated report.

Matlab

The information collected and generated by the application is contained within
structures. After running the application a datafile called output.mat is stored
in the active directory. If the user type load output in the Matlab Command
Window, two different structures, Foil and Body, are loaded into the workspace.
These structures contains all the estimates and information collected through
the session.

The report

Assuming MikTex (2003) and a pdf viewer are installed on your system, hde is
capable of presenting the estimates in an automatically generate pdf file. This
feature was created by preparing a Latex text-file from Matlab, where links to

50 Chapter 5. Hydrodynamic software

Figure 5.4: hde- Torpedo model

numerical values are written as tags1. In the latex source code, the file created
by Matlab is imported, and the parameters, addressed by theirs tags, are
dynamically updated during compilation.

5.2 Simulation environment

In order to make it possible to simulate and examine different designs, a nonlin-
ear Matlab Simulink interface, hdesim.mdl, which builds on the work reported
in Nahon (1996), has been implemented. The interface, import an hde model,
and calculates the hydrodynamic forces directly from known relations (lift and
drag) which govern the flow around the body and foil sections (hereafter referred
to as reference points). A summary of the procedure is given below.

1. At each iteration, the velocity at each reference point is calculated accord-
ing to the velocity kinematics

Vi =

√

(u + p zi − r yi)
2 + (v + r xi − p zi)

2 + (w + p yi − q xi)
2 ,

where xi, yi and zi are the body fixed coordinates of the hydrodynamic
center for reference point i.

2. The angle of attack and sideslip angles are calculated at each reference

1using the \newcommand{\TAG}{<value>} feature in Latex.

5.2. Simulation environment 51

point according to

αi = arctan

(
w + p yi − q xi

u + q zi − r yi

)

, βi = arcsin

(
v + r xi − p zi

Vi

)

.

3. The lift coefficients are calculated at each reference point according to the
procedures described in Chapter 3. If necessary, the lift is limited by the
flat stall characteristic described in Section 3.1.1.

4. The drag coefficients are calculated at each control point according to the
procedures described in Chapter 3. In addition, lift induced drag from
the control surfaces are added according to the procedure described in
McCormick (1994). Thus,

CDi = CD0,i +
C 2

L,i

πAi e
,

where CD0 is the parasite drag, and e is the Oswald efficiency factor (im-
plemented as e = 0.87). To avoid drag flatten when the planes operates
past the stall point, the lift coefficient used in the equation above, is the
one obtained obtained prior to incorporating stall effects.

5. Each component force is dimensionalized by the dynamic pressure and
reference area (1

2 ρ V 2
i L2

pp), and transformed into the body axes.

6. The forces and moments acting on the vehicle are summed together, mak-
ing it possible to obtain an estimate of the acceleration vector, ν̇.

7. Integrating ν̇ in Simulink, yields an estimate of the velocity vector ν,
which in turn is transformed into η̇ through the transformation

η̇ = J(η)ν ,

where J(·) is the transformation matrix defined in Appendix A.3.

8. Integrating η̇ yields an estimate of the inertial position vector, η.

5.2.1 hde Simulink interface

The Simulink interface, shown in Figure 5.5, may be used for real time simulation
of hde models. In order to use the model, there are a few matters the user should
be aware of. First, in order to load a model into the hdeSim environment, the
user need to push the Load HDE model button; which will open a dialog where
the user can specify a saved hde model. Second, the vehicle used in simulation
need control surfaces in both the xy and xz plane in order to have a stable
vehicle, which is necessary if the user want reasonable results from simulation.
Third, the simulation environment is not expected to work very well at velocities
close to zero, or at large sideslip/ angle of attacks (α, β ≥ 50◦), because of
limitation in theory used in implementation.

52 Chapter 5. Hydrodynamic software

Referring to Figure 5.5, the block labelled Oceanic disturbances is simply a first
order Gauss-Markov Process, which can be used in simulation (optional) for
testing the robustness of controllers. The subsystem AUV, shown in Figure 5.6,
is used as an interface against the simulation procedure described above. This
subsystem contains some features from the Marine GNC-toolbox (Fossen 2003).

1.5

u_ref

−7.628

−0.04862

Yaw
YawRate

U U(E)

Yaw

1.478

Velocity

U U(E)

Vel

simout

To Workspace

Load HDE model

5

SternPlaneStep1

Step

In1

In2

Out1

Speed
Control

0

Rudder

−43.71

Pitch1

U U(E)

Pitch

Oceanic
 disturbances

 (Current)

−C−

Initial Pos

−K−

Gain6

−K−

Gain4

−K−

−K−

Gain

U U(E)
67.09

Depth

InitPos

Vcurr

Comm

n,v

AUV

6

3

 5{5}

 5{5}

12

12

12

12

12

12

12

2 2

Figure 5.5: hde Simulink interface, hdeSim

1

n,v

1
s

xo

1
sxo

−C−

Initial velocity

MATLAB
Function

AUV−dynamics
eta

nu

J(eta)*nu

6 DOF transformation

3

Comm

2

Vcurr

1

InitPos

6

6

6

6

6

6

6

6

6

6
6

12
12

12

20

20

3

 5{5}

Figure 5.6: hde, AUV model

5.2.2 Open loop simulations

In order to verify the procedure described above, we construct an hde model
of the REMUS AUV, which is a Myring torpedo profile (see Figure 5.8), and
compare the simulated results with experimental results reported in Prestero
(2001). The shape and particulars of the vehicle are approximately given by the
parameters in Table 5.2.

5.2. Simulation environment 53

Body Foils Mass and inertia

a 0.191m xle 1.207m m 30.48kg
b 0.845m cr 0.089m zcg 0.02m
L 1.386m ct 0.059m Ixx 0.177kgm2

Lpp 1.349m b 0.262m Iyy 3.45kgm2

n 2 Izz 3.45kgm2

θ 25◦

d 0.191m

Table 5.2: REMUS particulars

Prestero (2001) report a yaw-rate of approximately −10◦/s when the REMUS
AUV is exposed to a rudder step input, δr ≃ 4◦ at a surge velocity, u, of
approximately 1.5m/s. From simulation in the hde environment, we obtain
Figure 5.7 and an estimated yaw rate of approximately −9◦/s.

100 100.5 101 101.5 102 102.5 103 103.5 104 104.5 105
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Time (s)

ψ (1◦)

Figure 5.7: Simulation of yaw step response, δr = 4◦

Prestero (2001), also include some other results from open loop experiments.
However, because it has been difficult to compare these results with simulation,
they are not included. The difficulties are mainly due to the fact that the author
suspect that reported data of either the ”weight and buoyancy” and/or inertias
are not in agreement with the vehicle. The suspicion is based on Figure 7.8 in
Prestero (2001), where we observe that the vehicle keeps a fixed depth when the
pitch angle is zero and the stern planes are deflected approximately 4◦. Looking
at the physics, it indicate that the center of gravity probably is located aft the
center of buoyancy.

54 Chapter 5. Hydrodynamic software

Figure 5.8: hde- model, REMUS

An open loop simulation of the vehicle discussed in Chapter 4, has also been
carried out. The motivation for this particular simulation is simply to verify the
results from simulation vs. the linearized transfer function. As in Figure 4.5,
the results from simulation, Figure 5.9, are nondimensionalized. As we can see,
the steady state nondimensional depth rate, ż′, is approximately 0.55 when the
stern planes are deflected 5◦.

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

Non dimensional time, t′ = t Uo
Lpp

N
on

di
m

en
si

on
al

de
pt

h,
z
′

z′(t′) ≃ 0.55 · t′ − 9.8

Figure 5.9: hde open loop simulation, step δe = 5◦ at t′ = 5

5.3 WAMIT

As a part of this work, a number of WAMIT runs has been executed. The body
which has been examined is identical to the one discussed in Chapter 4. As

5.4. Comparison 55

seen in Figure 5.10, several user defined files need to be prepared in order to run
WAMIT. All files, except for the MultiSurf CAD model (see Figure 5.11) used
to describe the geometric input to WAMIT, are provided in Appendix C. The
different runs, except for the one used to compare the output from hde with
WAMIT in the next section, has been executed in an environment similar to
the basin at the Marine Cybernetics Laboratory (Fossen 2004b). In the user
prepared input-files, the vehicle has been submerged 0.75m and the water-depth
has been specified to be 1.5m. The origin of the coordinate systems has been
specified to be at the center of buoyancy (along the axis of revolution, 0.781m aft
the nose vertex). The length used for nondimensionalizing is L = Lpp = 1.64m.
All output files are provided in Appendix C.

Figure 5.10: Flow chart of WAMIT with their associated input and output files
(WAMIT-Inc 2003)

5.4 Comparison

In the following, we compare the added mass calculations in hde against
WAMIT and experimental results. A discussion of the result is presented in
Section 5.5.

5.4.1 Added mass

In order to verify the results from the hde application, we compare the out-
put with experimental data for the REMUS AUV (see Figure 5.8), reported in

56 Chapter 5. Hydrodynamic software

Figure 5.11: MultiSurf CAD model, MAYA

(Prestero 2001, Appendix C), and a torpedo shaped AUV designed and tested
at the Queensland University of Technology (Ridley et al. 2003). The results
are presented in Table 5.3 and 5.4.

Xu̇ Yv̇ Yṙ Zẇ Zq̇ Kṗ Mẇ Mq̇ Nv̇ Nṙ

hde −0.94 −35.31 2.14 −35.31 −2.14 −0.02 −2.14 −4.67 2.14 −4.67
Prestero (2001) −0.93 −35.50 1.93 −35.50 −1.93 −0.07 −1.93 −4.88 1.93 −4.88

difference 0.6% −0.5% 10.8% −0.5% 10.9% −76.9% 10.9% −4.4% 10.8% −4.4%

Table 5.3: REMUS added mass, hde estimates vs. experimental results

Xu̇ Yv̇ Yṙ Zẇ Zq̇ Kṗ Mẇ Mq̇ Nv̇ Nṙ

hde −0.41 −26.86 2.48 −26.86 −2.48 −0.04 −2.48 −4.23 2.48 −4.23
Ridley et al. (2003) 0.42 −27.20 −1.83 −27.20 1.83 −0.04 1.83 −4.34 −1.83 −4.34
Ridley et al. (2003)2 −0.42 −27.20 1.83 −27.20 −1.83 −0.04 −1.83 −4.34 1.83 −4.34

difference −1.7% −1.2% 35.4% −1.2% 35.4% 6.0% 35.4% −2.6% 35.4% −2.6%

Table 5.4: Added mass, hde estimates vs. Ridley et al. (2003)

Figure 5.12: hde model used to obtain Table 5.5

In order to test the output from WAMIT, we also compare the output from
2To the best of the authors knowledge, it looks like there are some incorrect signs in the

original text.

5.5. Discussion 57

hde with WAMIT; the results are presented in Table 5.5.

Xu̇ Yv̇ Zẇ Zq̇ Kṗ Mẇ Mq̇ Nṙ

hde −1.00 −46.90 −53.87 −4.31 −0.06 −4.31 −10.28 −8.40
WAMIT −2.14 −41.59 −43.86 −0.85 −0.02 −0.85 −6.85 −6.18

difference −53.2% 12.8% 22.8% 405.0% 212.8% 404.9% 50.1% 36.0%

Table 5.5: MAYA added mass, hde estimates vs. WAMIT

5.4.2 Drag

So far, we have tested and verified hde’s capability to estimate lift with open
loop simulations; however there is one more property we need to address; namely
drag. In the following, we try to compare the results from hde with experimental
data reported in Ridley et al. (2003) and Prestero (2001). The results are
provided in Table 5.6, and will be discussed in more detail at the end of the
chapter.

REMUS Unnamed
hde F = 5.20N X|u|u = −2.49kg/m

Prestero (2001) F = 4.01N
Ridley et al. (2003) X|u|u = −3.11kg/m

Table 5.6: Drag comparison, hde vs. experimental data

5.5 Discussion

In this chapter, we have presented the hde toolbox developed as a part of this
work. With the aid of open loop simulations, we have compared the hde simu-
lator against experimental data; and it has been seen that the results are indeed
comparable.

The added mass estimates from hde are comparable to experimental results re-
ported in Ridley et al. (2003) and Prestero (2001); at least if we ”correct” the
signs of some of the results reported in Ridley et al. (2003). However, it is
seen that the estimates from hde of the cross-terms, Yṙ, Zq̇, Mẇ and Nv̇, are
overestimated compared to the experimental results. The added mass in roll,
Kṗ, is in very good agreement with the experimental results reported in Ridley
et al. (2003), but is underestimated by almost 80% in Prestero (2001). One pos-
sible reason for this ”huge” deviation is thought to be that the REMUS vehicle
was equipped with some additional equipment during towing tank experiments
(LBL-, SSS-, and ADCP transducers).

The comparison of added mass estimated by hde and WAMIT are a bit disap-
pointing; at least if we take the relative good agreement between experimental

58 Chapter 5. Hydrodynamic software

results and hde as a guideline. It seems like WAMIT fail to estimate the contri-
bution from the low aspect-ratio foils involved in a typical AUV design. During
the first test runs with WAMIT, the default panel size of 0.2 <units> was used,
and we could hardly observe any contribution from the foils at all. However,
in the results presented above and in Appendix C, the panel_size is reduced to
0.02 <units>; which is close to the minimum panel size WAMIT allow for this
particular vehicle (WAMIT-Inc 2003, WAMIT can ”only” subdivide a body into
2048 subdomains). An observation, made by the author, is that reduction of
panel_size ”improved” the output until we reached a panel size of approximately
0.08 <units>; further reduction did not yield any noticeable difference in the
output.

Regarding the comparison of drag in Table 5.6, it is hard to give any qualitative
evaluation of the results. We observe that hde overestimate the drag of the
REMUS AUV and underestimate the drag compared to the result reported
in Ridley et al. (2003). The latter is expected, because the vehicle used in
experiment was equipped with a thruster/duct; which will add some drag to
the total (recall that hde do not consider thruster issues at all). The former, on
the other hand, is more difficult to explain. In the work of Prestero (2001), the
objective was to separate the drag contribution from the AUV and the various
equipment installed. It seems like Prestero (2001) has decided that the drag
contribution from the hull equals empirical data provided in textbooks, in order
to simplify further experiments where he estimate the drag contribution for
equipment mounted on the body; therefor, one should probably be careful when
using the data provided for drag as experimental results.

Chapter 6

Conclusion

In this work, we have successfully used the USAF Stability and Control Datcom
(1978), to obtain hydrodynamic stability derivatives in the vertical plane. The
equations has been rewritten so that they all refer to a common reference area
(Lpp), which is standard for submerged vehicles (SNAME 1950). It is hoped that
this work can be used as a foundation and reference, when modelling vehicles
such as an AUV. It is believed that the work presented in Chapter 3, have the
potential of reducing miscalculations and pitfalls due to conversation between
all the reference areas normally used in aero- and hydrodynamic computation.

The theory presented in Chapter 3, has successfully been used in Chapter 4 to
obtain a linearized model of the MAYA AUV in the vertical plane. In Chap-
ter 5, the same theory was used to develop a Matlab toolbox, hde, which is
thought to be the main contribution from this work. The application, is capable
of estimating hydrodynamic parameters such as static and dynamic derivatives
(in both the vertical and horizontal plane), lift and moment curves for con-
trol surfaces, and added mass in six degrees of freedom. Further, a nonlinear
Matlab Simulink interface, which use the models constructed in hde, has been
implemented. The simulator, described in Chapter 5.2, retains all the nonlin-
earities inherent in the coupled dynamics equations of motion, as well as those
inherent to the hydrodynamic relations which govern the forces acting on the
hull and control planes (Nahon 1996). It is hoped that hde, and its simulation
environment, can be used by both students and professionals to analyze vehicles
dynamics and/or for testing of controllers.

The output from hde has been compared with experimental data reported in
Ridley et al. (2003) and Prestero (2001). Simulations in hde indicate that prop-
erties such as lift and turning rates are comparable with experimental data.
Further, hde estimates of the added mass terms are indeed comparable with
those reported from the authors mentioned above. The drag forces has also
been investigated, but it has not succeeded to make a qualitative comparison of
this particular term.

From WAMIT, an investigation of added mass of an typical AUV has been

59

60 Chapter 6. Conclusion

carried out. Based on the results, it is concluded that WAMIT fail to accurately
estimate the added mass contribution from the low aspect-ratio foils involved
in a typical AUV design.

6.1 Recommendations for future work

A great amount of work has been carried out; but there are some improvements
listed below that can be made to the hde environment.

In Chapter 3, we assumed that there was a turbulent boundary layer condition
over the entire surface of the body. Even though this assumption may be ade-
quate for a torpedo shaped vehicle operating at cruising speed, it indicates that
hde will not favor a streamlined vehicle. It is therefore recommended that theory
that distinguishes between the different vehicles is implemented. It would also
be advantageous if we could extend the theory, by taking into account thrusters
dynamic, and duct/body interaction.

The report generator as implemented could be extended to present the expected
dynamic of the vehicle in form of figures showing the step response of the vehicle.

The notation used for parameters in the horizontal plane is not in accordance
with standard notation in the current version, and should be improved.

The current version of hde, only supports vehicles with one set of control surfaces
in each plane. If the theory is extended to take into account downwash, we could
easily extend hde to estimate the expected performance for a vehicle with two
control surfaces in one plane.

Further, the current version does not really estimate the body fixed damping
matrix, in the form presented in (2.7). Even though it is thought that accept-
able estimates of this particular matrix can be obtained, by performing standard
maneuvering tests (Fossen 2002, Triantafyllou & Hover 2003) in the hde envi-
ronment, and measure the response in Simulink, it would be favorable if we
could extend the theory in hde to directly give an estimate of the matrix.

References

Abbot, I. H. & Doenhoff, A. E. (1959), Theory of wing sections, Dover books
on physics and chemistry, McGraw-Hill Book Company.

Barros, E. A., Pascóal, A. & de Sa, E. (2004), AUV dynamics: Modelling and
parameter estimation using analytical, semi-empirical, and CFD methods,
in ‘Proc. IFAC Conference on Control Applications in Marine Systems’,
Ancona, Italy. To appear.

Blakelock, J. H. (1991), Automatic Control of Aircraft and Missiles, 2 edn, John
Wiley and Sons, Inc.

Blevins, R. D. (1979), Formulas for natural frequency and mode shape, Krieger
Publishing.

Carmichael, B. H. (1966), ‘Underwater drag reduction through optimum shape’,
AIAA Second Propulsion Joint Specialist Conference .

Datcom (1978), USAF Stability and Control Datcom, McDonnell Douglas Cor-
poration, Wright-Patterson Airforce Base, Ohio. Hoak, D E & Finck, R
D.

Fossen, T. I. (2002), Marine Control Systems: Guidance, Navigation and Con-

trol of Ships, Rigs and Underwater Vehicles, Marine Cybernetics, Trond-
heim, Norway.

Fossen, T. I. (2003), ‘Matlab gnc toolbox’. Internet. [Accessed September 27,
2003] <http://www.marinecybernetics.com/software.htm>.

Fossen, T. I. (2004a), ‘Lecture notes’. Internet. [Accessed June 22, 2004]
<http://www.itk.ntnu.no/fag/gnc/LectureNotes/Lecture.pdf>.

Fossen, T. I. (2004b), ‘Marine cybernetics laboratory’. Internet. [Accessed
June 18, 2004] <http://www.itk.ntnu.no/marinkyb/MCLab/>.

Gertler, M. (1950), Resistance experiments on a systematic series of stream-
lined bodies of revolution - for application to the design of high-speed sub-
marines, Technical Report C-297, Navy Department- The David W. Taylor
Model Basin.

Goheen, K. R. (1991), ‘Modelling methods for underwater robotic vehicle dy-
namics’, Journal of Robotic Systems 8(3), 295–317.

61

62 REFERENCES

Hoerner, S. F. (1985), Fluid dynamic lift: Practical Information on Aerodynamic

and Hydrodynamic lift, 2 edn, Published by author.

Humphreys, D. E. (1981), Dynamics and hydrodynamics of ocean vehicles, in

‘Proc. MTS/IEEE OCEANS’, pp. 88–91.

International Submarine Engineering Ltd (2004), ‘Ise web based designinfo’.
Internet. [Accessed April 2, 2004] <http://www.ise.bc.ca/>.

Jones, G. W. (1952), Investigation of the effects of variation in
the reynolds number between 0.4 · 106 and 3 · 106 on the low-
speed aerodynamic characteristics of three low-aspect-ratio symmet-
rical wings with rectangular plan forms, Technical Report RM
L52G18, NACA, Langley Aeronautical Laboratory. Internet. [Accessed
June 16, 2004] <http://naca.larc.nasa.gov/digidoc/report/rm/18/NACA-
RM-L52G18.PDF>.

Journée, J. M. J. & Massie, W. W. (2001), ‘Offshore hydromechan-
ics’. Internet. [Accessed June 16, 2004] <www.ocp.tudelft.nl/mt/
journee/Files/Lectures/OffshoreHydromechanics.pdf>.

Maeda, H. & Tatsuta, S. (1989), Prediction method of hydrodynamic stability
derivatives of an autonomous non-tethered submerged vehicle, Vol. 6, The
Hague, Netherlands, pp. 105–114.

McCormick, B. W. (1994), Aerodynamics, aeronautics, and flight mechanics, 2
edn, Wiley Text Books.

McCormick, B. W. (1995), Aerodynamics, Aeronautics, and Flight Mechanics,
2 edn, John Wiley and Sons, Inc.

MikTex (2003), ‘Tex implementation for the windows operating system’. Inter-
net. [Accessed August 15, 2003] <http://www.miktex.org/>.

Munk, M. M. (1934), Aerodynamic Theory, Vol. 5, Dover Publ. Inc, chapter
Aerodynamics of Airships. Reprinted several times.

Myring, D. F. (1976), ‘A theoretical study of body drag in subcritical axisym-
metric flow’, Aeronautical Quarterly 27(3), 186–194.

Nahon, M. (1993), Determination of Undersea Vehicle Hydrodynamic Deriva-
tives Using the USAF Datcom, in ‘Proc. MTS/IEEE OCEANS’, Vol. 2,
pp. 283–288.

Nahon, M. (1996), A simplified dynamics model for autonomous underwater
vehicles, in ‘Proc. Symposium on Autonomous Underwater Vehicle Tech-
nology’, Vol. 2, IEEE, pp. 373–379.

Nelson, R. C. (1997), McGraw-Hill Higher Education.

Newman, J. N. (1999), Marine Hydrodynamics, 9 edn, MIT, Cambridge, Mas-
sachusetts.

REFERENCES 63

Paster, D. L. (1986), Importance of hydrodynamic considerations for underwater
vehicle design, in ‘Proc. MTS/IEEE OCEANS’, Vol. 18, pp. 1413–1422.

Pepijn, W. J., Johansen, T. A., Sørensen, A. J., Flanagan, C. & Toal, D. (2004),
Neural network augmented identification of underwater vehicle models, in

‘Proc. IFAC Conference on Control Applications in Marine Systems’, An-
cona, Italy. To appear.

Pereira, J. & Duncan, A. (2000), System identification of underwater vehicles,
in ‘Proceedings of the 2000 International Symposium on Underwater Tech-
nology’, IEEE, pp. 419–424.

Pitts, W. C., Nielsen, J. N. & Kaattari, G. E. (1957), Lift and center
of pressure of wing-body-tail combinations at subsonic, transonic, and
supersonic speeds, Technical Report TN 1307, NACA. Internet. [Ac-
cessed March 15, 2004] <http://naca.larc.nasa.gov/reports/1957/naca-
report-1307/naca-report-1307.pdf>.

Prestero, T. (2001), Verification of a six-degree of freedom simulation model for
the remus autonomous underwater vehicle, Master’s thesis, MIT.

Ridley, P., Fontan, J. & Corke, P. (2003), Submarine Dynamic Modeling, in

‘Proc. Australasian Conference on Robotics & Automation’, Brisbane, Aus-
tralia.

Roskam, J. (1979), Airplane flight dynamics and automatic flight controls, num-
ber 1 in ‘Airplane flight dynamics’, Roskam Aviation and Engineering Cor-
poration.

SNAME (1950), ‘Nomenaclature for treating the motion of a submerged body
through a fluid’, Technical and Research Bulletin No. 1-5.

Triantafyllou, M. S. & Hover, F. S. (2003), ‘Maneuvering and control of marine
vehicles’. Internet. [Accessed November 20, 2003] <http://ocw.mit.edu/
NR/rdonlyres/Ocean-Engineering/13-49Maneuvering-and-Control-of-
Surface-and-Underwater-VehiclesFall2000/9902D412-8BF9-4401-874B-
850F2FC6267A/0/all.pdf>.

WAMIT-Inc (2003), ‘Wamit user manual’. Internet. [Accessed December 17,
2003] <www.wamit.com>.

Whicker, L. F. & Fehlner, L. F. (1958), Free-stream characteristics of a family of
low-aspect-ratio, all movable control surfaces for application to ship design,
Technical Report 933, Navy Department- The David W. Taylor Model
Basin.

White, F. M. (1998), Fluid Mechanics, 4 edn, McGraw-Hill Book Company.

Appendices

Appendix A

Nomenclature

A.1 Notation

First Column Second Column Third Column

b m Foil span
c̄ m Mean hydrodynamic center; chord length
CD0 - Parasite drag
CB m Center of buoyancy
CG m Center of gravity
CLα rad−1 Lift curve slope
CLq rad−1 Pitching moment, curve-slope
CLδ

rad−1 Control surface, lift curve-slope
Cmα rad−1 Pitching moment, curve-slope
Cmδ

rad−1 Control surface moment curve-slope
Cmq rad−1 Pitching moment, curve-slope
(CLα)B rad−1 Lift curve slope, body alone
(CLα)F (B) rad−1 Lift curve slope, foil in presence of body
(CLα)B(F) rad−1 Lift curve slope, body in presence of foil
(CLα)FB rad−1 Lift curve slope, foil-body configuration
d m Diameter of body of revolution
db m Base diameter, body
f - Fineness ratio
fn

b - Buoyancy vector decomposed in NED
fn

g - Gravity vector decomposed in NED
kB(F) - Correlation factor
kF (B) - Correlation factor
KF (B) - Correlation factor
KB(F) - Correlation factor
ν m2/s Kinematic viscousity
Lpp m Length between perpendiculars
xc m Centroid of the volume (Center of buoyancy)
xhc m Hydrodynamic center
V– m3 Displaced volume, body

Continued on next page

67

68 Appendix A. Nomenclature

First Column Second Column Third Column

Rn - Reynolds number
Rb

n(·) - Rotation matrix NED=>Body
Rn

b (·) - Rotation matrix Body=>NED
S(·) - Cross-product operator
Sbase m2 Base area body
Se m2 Exposed foil area
Sb m2 Wetted area body
Swf m2 Wetted area foil
xm m Reference point
xc m Centroid volume (Center of buoyancy)
xhc m Hydrodynamic center
ν m2/s Kinematic viscosity
ς - d/b, diameter-span ratio
ϑ - b/d, span-diameter ratio
ϑ - b/d, span-diameter ratio

Table A.1: Nomenclature

A.2 Abbreviations

AUV Autonom Underwater Vehicle
CAD Computer Aided Drawing
CA Center of Added mass
CB Center of Buoyancy
CG Center of Gravity
DOF Degree Of Freedom
ECEF Earth center earth fixed
NED North East Down
hde HydroDynamic Estimation toolbox

A.3 Matematical definitions and notation

Position and orientation vector, η

The position and orientation vector is defined in ECEF. However, in this text
flat earth navigation has been assumed, which suggest that the position vector
can be decomposed in NED relative to some predefined reference point. Hence,
the position vector is defined as:

η =

[
pn

Θ

]

(A.1)

where pn = [n, e, d]T is the relative position in north, east and down direction
respectively. Θ = [φ, θ, ψ]T is a vector of Euler angles.

A.3. Matematical definitions and notation 69

Generalized velocity vector, ν

The generalized velocity vector utilized in this text, is decomposed in the body
frame:

ν =
[
u v w p q r

]T
(A.2)

where u, v, w are the body fixed linear velocities and p, q, r are the body fixed
angular velocities respectively.

Definition of Euler rotation matrix

The Euler rotation matrix transform a vector from one coordinate system into
another. It can be defined by the multiplication of three elementary rotation
matrices corresponding to for example the vehicles roll φ, pitch θ and yaw ψ
angles.

Rn
b (Θ) = Rb

n(Θ)−1 = Rz,ψRy,θRz,φ (A.3)

=





cos ψ − sinψ 0
sinψ cos ψ 0

0 0 1









cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ









1 0 0
0 cos φ − sinφ
0 sin φ cos φ





=





cos ψ cos θ − sinψ cos φ + cos ψ sin θ sin φ sinψ sin φ + cos ψ sin θ cos φ
sinψ cos θ cos ψ cos φ + sinψ sin θ sinφ − cos ψ sinφ + sin ψ sin θ cos φ
− sin θ cos θ sin φ cos θ cos φ



 .

The Euler rotation matrix is orthogonal and therefor its inverse is equal to its
transpose.

Definition of the Cross product operator

The cross product operator is defined by λ × a := S(λ)a, where

S(λ) = −ST(λ) =





0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0



 , (A.4)

and λ = [λ1, λ2, λ3]
T.

6DOF transformation matrix, J(η)

The 6DOF transformation matrix, transforms the body-fixed linear and angular
velocities into earth fixed (NED) velocities (η̇ = J(η)ν).

J(η) =

[
Rn

b (Θ) 03×3

03×3 T (η)

]

(A.5)

where T (η) is the angular velocity transformation matrix:

T (η) =





1 sinφ tan θ cos φ tan θ
0 cos φ − sinφ

0 sin φ
cos θ

cos φ
cos θ



 (A.6)

70 Appendix A. Nomenclature

A.4 Derivation of body-pitching moment curve slope

Cmα =
2 · (k2 − k1)

L3
pp

·
∫ x0

0

dS(x)

dx
(xm − x) dx (1/rad),

=
2 · (k2 − k1)

L3
pp

·
(

xm

∫ S(x0)

S(0)

dS(x) −
∫ x0

0
x dS(x)

)

= xm Cla S(x) |x0
x=0 −2 (k2 − k1)

(

x S(x) |x0
x=0 −

∫ x0

0
S(x) dx

)

︸ ︷︷ ︸

Chain rule

=
xm CLα

Lpp
+ 2 (k2 − k1)

V0 − S0 x0

L3
pp

[1/rad] .

(A.7)

A
.5

.
O

p
e
n

lo
o
p

tra
n
sfe

r
fu

n
c
tio

n
s

7
1

A.5 Open loop transfer functions

As you can imagine, it is hard to type the equations below. In order to avoid mistyping the author used Matlab as a tool for
”typing” the equations. The reader should be aware that if multiple operators are present, they are not mistyped (i.e ”− − a = +a”,
”− + a = −a”). All the parameters in the equation are as defined in Table 3.1.

α
δ (s) =

(

(I′yy−M′

q̇) L2
pp

U2 ·CLδ
+Cmδ

·
(

(Z′

q̇+m′ x′G) L2
pp

U2

))

· s2+

(

Cmδ
·
(

(Z′

q+m′) Lpp

U

)

−
(

(Cmq−m′ x′G) Lpp

U

)

· (CLδ)
)

· s−CLδ
·M ′

θ

(

(I′yy−M′

q̇
) L2

pp

U2 ·
(

(m′
−Z′

ẇ
) Lpp

U

)

−
(

(M′

ẇ
+m′ x′

G
) Lpp

U

)

·
(

(Z′

q̇
+m′ x′

G
) L2

pp

U2

))

· s3+

(

Cmα ·
(

(Z′

q̇
+m′ x′

G
) L2

pp

U2

)

−Z′

α ·
(I′yy−M′

q̇
) L2

pp

U2 −
(

(Cmq−m′ x′
G

) Lpp

U

)

·
(

(m′
−Z′

ẇ
) Lpp

U

)

−
(

(M′

ẇ
+m′ x′

G
) Lpp

U

)

·
(

(Z′
q+m′) Lpp

U

))

· s2+

(

Cmα ·
(

(Z′
q+m′) Lpp

U

)

+

(
(Cmq−m′ x′

G
) Lpp

U

)

·Z′

α−M ′

θ ·
(

(m′
−Z′

ẇ
) Lpp

U

))

· s+Z′

α ·M ′

θ

(A.8)

θ
δ =

((
(m′

−Z′

ẇ) Lpp
U

)

·Cmδ
+CLδ

·
(

(M′

ẇ+m′ x′G) Lpp
U

))

· s−CLδ
·Cmα−Z′

α ·Cmδ

(I′yy−M′

q̇
) L2

pp

U2 ·
(

(m′
−Z′

ẇ
) Lpp

U

)

· s3−
(

(M′

ẇ
+m′ x′

G
) Lpp

U

)

·
(

(Z′

q̇
+m′ x′

G
) L2

pp

U2

)

· s3+

(

Cmα ·
(

(Z′

q̇
+m′ x′

G
) L2

pp

U2

)

−
(I′yy−M′

q̇
) L2

pp

U2 ·Z′

α−
(

(Cmq−m′ x′
G

) Lpp

U

)

·
(

(m′
−Z′

ẇ
) Lpp

U

)

· s2−
(

(M′

ẇ
+m′ x′

G
) Lpp

U

)

·
(

(Z′
q+m′) Lpp

U

))

· s2+

((
(Cmq−m′ x′

G
) Lpp

U

)

·Z′

α−M ′

θ ·
(

(m′
−Z′

ẇ
) Lpp

U

)

+Cmα ·
(

(Z′
q+m′) Lpp

U

))

· s+M ′

θ ·Z′

α

(A.9)

Appendix B

MatlabSource code

Below, are the different functions developed during this thesis. It is hoped that
the source code is documented and structured in such a way that it is self-
explanatory. The expressions and theory used are mainly those presented in
Chapter 1, Chapter 2.3 and Chapter 5.

B.1 hde-toolbox

B.1.1 hdeSimulinkModel.m

function nuDot = hdeSimulinkModel(eta, nu, curr, Uc, varargin)

%

% nudot = hdeSimulinkModel(eta, nu, curr, Uc, varargin) calculates the

% acceleration of the hde model.

%

% Input:

% - eta 6x1 position vector

% - nu 6x1 velocity vector

% - curr 3x1 disturbance vector (velocities decomposed in NED)

% - Uc (1+2*n)x1 Control input , where n is the number of control

% planes.

% - Use varargin if you want to open a new hde model within the

% simulator environment

%

%

% Author: Håvard Bø

% Date: summer 2004

% Revisions:

%fid = fopen(’temp.txt’,’w’);

persistent FIRSTRUN HC MRB MA VISC LREF Lpp D WA dbDIVd

persistent DRAGNORM RHO CLA K W B XG XB CD

% Uc = [Propeller, axy_n, axy_p, axz_n, axz_p]

% References:

% Fossen, T. I (2003) Matlab GNC Toolbox. [Internet]

% <http://www.marinecybernetics.com/software.htm>

% Fossen, T. I (2002) "Marine Control Systems: Guidance, Navigation and

% Control of Ships, Rigs and Underwater Vehicles". Marine

% Cybernetics, Trondheim Norway.

% Jones, G. W (1952). "Investigation of the effects of variation in the

% Reynolds number between 0.4*10^6 and 3*10^6 on the low-speed

% aerodynamic characteristics of three low-aspect-ratio symmetrical

% wings with rectangular plan forms". NACA, Langley Aeronautical Laboratory

% Reportnr: RM L52G18. [Internet, June 16 - 2004]

% <http://naca.larc.nasa.gov/digidoc/report/rm/18/NACA-RM-L52G18.PDF>

73

74 Appendix B. MatlabSource code

% Nahon, M (1996). "A Simplified Dynamics Model for Autonomous Underwater

% Vehicles", Proc. Symposium on Autonomous Underwater Vehicle

% Technology VOL 2, pp 373-379. (IEEE).

% Pitts, W C & Nielsen, J N & Kaattari, G E. (1957). "Lift and center of pressure of

% wing-body-tail combinations at subsonic, transonic, and supersonic speeds.

% NACA, technical report: TN 1307. [Internet, March 15 - 2004

% <http://naca.larc.nasa.gov/reports/1957/naca-report-1307/naca-r

% eport-1307.pdf>

if ~isempty(varargin)

FIRSTRUN = [];

[fileName, filePath] = uigetfile({’*.hde’,’HDE model’},’Load an HDE model from file’);

unzip([filePath,fileName],tempdir)

fileNa = strrep(fileName,’.hde’,’’);

load([tempdir,[fileNa,’.mat’]]);

clear fileNa

end

% Executes first time the function is called

if isempty(FIRSTRUN)

g = 9.81;

RHO = Body.Param.Rho; % Fluid density

MRB = Body.Mrb; % Rigid body system inertia matrix

MA = Body.Ma; % Added mass

W = MRB(1,1)*g; % Weight of the vehicle (used in restoring forces)

B = RHO*g*Body.Volume; % Buoyancy of body (used in restoring forces)

XG = [MRB(2,6)/MRB(1,1), 0 , MRB(5,1)/MRB(1,1)]’; % Fossen, T (2002, eq:3.55)

XB = [Body.Data.Xm - Body.Xc, 0,0]’; %

Lpp = Body.Param.Lpp; % Length between perpendiculars

LREF = Lpp; % Insert first reference length (used in drag calc)

D = Body.Param.d; % Diameter of body (reference)

WA = Body.WA; % Body, wetted Area

VISC = Body.Data.KinViscousity; % Kinematic viscousity

dbDIVd = Body.Sim.dbDIVd; % Used to calculate basedrag

DRAGNORM = Body.Sim.dragNormal; % Precalc data used to calc drag

CD = Body.Sim.cdDIVcf; %Precalc data used to calc drag

HC = Body.Sim.pos; % Hydrodynamic center of body alone

CLA = 0.5*Body.derivatives.Cla*[1;1]; %Body lift curve slope

K.Kfb = []; K.Kbf = []; K.kbf = []; K.kfb = []; % Init struct

for k=1:length(Foil)

B = B + RHO*g*Foil(k).Volume; % Displaced volume foil

% Insert hydrodynamic center of the control surfaces

HC = [HC,Foil(k).Sim.neg, Foil(k).Sim.pos];

% Insert foilSection lift curve slopes

% Calculations in HDE is based on both foils => divide by 2

newCLA = 0.5*[Foil(k).Cla, Foil(k).Cla];

if lower(Foil(k).Plane) == ’xy’;

CLA = [CLA, [newCLA;0, 0]]; % Only angle of attack affect...

elseif lower(Foil(k).Plane) == ’xz’;

CLA = [CLA, [0, 0;newCLA]]; % Only sideslip angle affect...

else

error(’Plane is not defined...’);

end

clear newCLA

% Insert characteristic lengths used in Rn calculations

LREF = [LREF, Foil(k).Cmac, Foil(k).Cmac];

CD = [CD, Foil(k).Sim.cdDIVcf/2, Foil(k).Sim.cdDIVcf/2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Interference factors %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K.Kfb = [K.Kfb, Body.FoilBody(k).Kfb, Body.FoilBody(k).Kbf];

K.Kbf = [K.Kbf, Body.FoilBody(k).Kbf, Body.FoilBody(k).Kbf];

K.kfb = [K.kfb, Body.FoilBody(k).kfb, Body.FoilBody(k).kfb];

K.kbf = [K.kbf, Body.FoilBody(k).kbf, Body.FoilBody(k).kbf];

end % For

B.1. hde-toolbox 75

% warning(’hdeSimulinkModel.m override the calculated Buoyancy (Bouyancy = Weight)’)

B = W;

FIRSTRUN = 1;

return

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Extract Euler angles %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

phi = eta(4); %

theta = eta(5); %

psi = eta(6); %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

% 1) Transform the disturbance vector into body frame

%%

nur = [(Rzyx(phi,theta,psi))^-1*curr; zeros(3,1)];

%%

%%

% 2) Calculate relative velocity (6DOF)

%%

Vr = nu+ nur;

%%

%%

% 3) Calculate the velocity and angle of attack /sideslip

% at each reference point

%%

[Vi, ALPHA, BETA] = refPointVel(Vr, HC) ;

%%

%%

% 4) Calculate lift at each reference point

%%

% Lift due to angle of attack/ Sideslip (Step1)+

% control surface deflection (Step2)

[Step1, Step2, LiftIndDrag] = calcLift(CLA, ALPHA, BETA, Uc,K);

CL = ([1;1]*0.5*RHO*Lpp^2*(abs(Vi.^2))).*Step1;

CLdelta = ([1;1]*0.5*RHO*Lpp^2*(abs(Vi.^2))).*Step2;

%%

%%

% 5) Calculate drag at each reference point

%%

Cf = calcCf(VISC, LREF, Vi); % Schoenherr flat-plate coeff

% Dragcoeff corresponding to the each ref. point

Drag = 0.5*RHO*Lpp^2*(abs(Vi).*Vi).*...

calcDrag(Cf,CD,dbDIVd,DRAGNORM, Uc,LiftIndDrag);

%%

%%

% 6) Transform the forces and moments into body axes

%%

Fprop = Uc(1); % Already body fixed (along the x axis)

FcFrame = [Drag;...

CL(2,:) + CLdelta(2,:);...

CL(1,:) + CLdelta(1,:)];

Fhydro = calcForceMoment(ALPHA, BETA, FcFrame, HC);

Fhydro(1) = Fhydro(1) - Fprop;

%%

%%

% 7) Calculate the corresponding acceleration vector

% m2c(diag(diag(MA)), Vr)*Vr + m2c(diag(diag(MRB)), nu)*nu +

%m2c(MA, Vr)*Vr + m2c(MRB, nu)*nu

%Vrm2c(MA, Vr)*Vr +

nuDot = - (MRB+MA)^-1*(m2c(MRB, nu)*nu +m2c(MRB, Vr)*Vr...

76 Appendix B. MatlabSource code

+ gvect(W, B, theta, phi, XG, XB) + Fhydro);

% clc

% [ALPHA; BETA]*180/pi

% [(m2c(MRB, nu)*nu)’;

% (m2c(MRB, Vr)*Vr)’;

% gvect(W, B, theta, phi, XG, XB)’;

% Fhydro’;

%]

% pause(0.04)

%%

%%%%%%%% Private functions used in calculations %%%%%%%%

%%

% Rotation matrix- Source Fossen, T I (2003)

function R = Rzyx(phi,theta,psi)

% R = Rzyx(phi,theta,psi) computes the Euler angle

% rotation matrix R in SO(3) using the zyx convention

%

% Author: Thor I. Fossen

% Date: 14th June 2001

% Revisions:

cphi = cos(phi);

sphi = sin(phi);

cth = cos(theta);

sth = sin(theta);

cpsi = cos(psi);

spsi = sin(psi);

R = [...

cpsi*cth -spsi*cphi+cpsi*sth*sphi spsi*sphi+cpsi*cphi*sth

spsi*cth cpsi*cphi+sphi*sth*spsi -cpsi*sphi+sth*spsi*cphi

-sth cth*sphi cth*cphi];

% Coriolis matrix- Source Fossen, T I (2003)

function C = m2c(M,nu)

% C = M2C(M) computes the 6x6 Coriolis-centripetal matrix C from the

% the 6x6 system inertia matrix M=M’>0 and the 6x1 velocity vector nu

%

% Author: Thor I. Fossen

% Date: 14th June 2001

% Revisions: 26th June 2002, M21 = M12 is corrected to M12’

nu1 = nu(1:3);

nu2 = nu(4:6);

M11 = M(1:3,1:3);

M12 = M(1:3,4:6);

M21 = M12’;

M22 = M(4:6,4:6);

dt_dnu1 = M11*nu1 + M12*nu2;

dt_dnu2 = M21*nu1 + M22*nu2;

C = [zeros(3,3) -Smtrx(dt_dnu1)

-Smtrx(dt_dnu1) -Smtrx(dt_dnu2)];

% Restoring forces - Source: Fossen, T (2003)

function g = gvect(W,B,theta,phi,r_g,r_b)

% g = GVECT(W,B,theta,phi,r_g,r_b) computes the 6x1 vector of restoring

% forces about an arbitrarily point O for a submerged body. For floating

% vessels, see Gmtrx.m

%

% Inputs: W, B: weight and buoyancy

% phi,theta: roll and pitch angles

% r_g = [x_g y_g z_g]: location of CG with respect to O

% r_b = [x_b y_b z_b]: location of CB with respect to O

%

% Author: Thor I. Fossen

% Date: 14th June 2001

% Revisions:

B.1. hde-toolbox 77

sth = sin(theta); cth = cos(theta);

sphi = sin(phi); cphi = cos(phi);

g = [...

(W-B)*sth

-(W-B)*cth*sphi

-(W-B)*cth*cphi

-(r_g(2)*W-r_b(2)*B)*cth*cphi + (r_g(3)*W-r_b(3)*B)*cth*sphi

(r_g(3)*W-r_b(3)*B)*sth + (r_g(1)*W-r_b(1)*B)*cth*cphi

-(r_g(1)*W-r_b(1)*B)*cth*sphi + (r_g(2)*W-r_b(2)*B)*sth];

% Function used to calculate the velocity at a given reference point, and

% effective angle of attack/ sideslip ref: Nahon (1996)

function [Vi,ALPHAi,BETAi] = refPointVel(Vr, pos)

xi = pos(1,:);

yi = pos(2,:);

zi = pos(3,:);

u = Vr(1);

v = Vr(2);

w = Vr(3);

p = Vr(4);

q = Vr(5);

r = Vr(6);

Vi = sqrt(... % Ref: Nahon (1996)

(u + p*zi - r*yi).^2 +...

(v + r*xi - p*zi).^2 +...

(w + p*yi - q*xi).^2);

% Calculate effective angle of attack

num = (w+p*yi-q*xi);

den = (u+q*zi-r*yi);

warning off MATLAB:divideByZero;

%

ALPHAi = atan(num./den);

ALPHAi(find(isnan(ALPHAi))) = 0; % If not defined

%

% Calculate effective sideslip angle

num = v+r*xi-p*zi;

BETAi = asin(num./Vi);

BETAi(find(isnan(BETAi))) = 0; % If zero velocity

warning on MATLAB:divideByZero;

function CDbase = calcCDbase(CD_marked, dBase, dmax);

CDbase = 0.029*((dBase/dmax)^3)/CD_marked;

% Function used to calculate Schoenherr flat-plate coeff

function [Cf,varargout] = calcCf(visc, L, U)

% The procedure below as first designed was very timeconsuming.

% Later on, it has been modified by using a polynomal approximation of

% the Schoenherr mean line ().

Rn = abs(U).*L/visc;

Rn(find(Rn<300)) = 300;

Rn(find(Rn>1e12)) = 1e12;

varargout = Rn;

%Rn = log(Rn);

% A close approximation developed by the author

%Cf = exp(- 0.00025759*Rn.^3 + 0.019483*Rn.^2 - 0.59059*Rn - 0.31927);

Cf = (0.075)./(log10(Rn)-2).^2;

% Old solution => Time consuming

% if Rn< 1e4; Rn=1e4; end;

% varargout = Rn;

% Cf = [];

% for i = 1:length(Rn)

% Cf = [Cf, str2double(char(solve([’0.242/sqrt(Cf) = log10(’,num2str(Rn(i)),’*Cf)’])))];

% end

78 Appendix B. MatlabSource code

%

% Function used to calculate Schoenherr flat-plate coeff

function Drags = calcDrag(Cf,CD,dbDIVd,DRAGNORM, u, LiftIndDrag);

RFB = 1.05; % According to Datcom (1978, Figure 4.3.3.1-37)

temp = Cf.*CD; % Parasite drags

temp(:,2:size(temp,2)) = temp(:,2:size(temp,2))*RFB +LiftIndDrag;

temp(1) = (temp(1)*RFB + 0.029/sqrt(temp(1)) * (dbDIVd)^3)*...

DRAGNORM; % from based on d^2 => Lpp^2

Drags = temp;

function [Step1, Step2, LiftIndDrag] = calcLift(CLA, ALPHA, BETA, Uc, K);

MAXcontrolInput = 30*pi/180;

MAXangle = 25*pi/180; % According to Jones, G. W (1952)

%%

% Calculate lift due to angle of attack/ Sideslip

% Step-1 in my Msc Report

%%

angles = [ALPHA;BETA];

body = angles(:,1); % Angle of attack/ Sideslip body

angles = angles(:,[2:size(angles,2)]); % Extract Control surfaces

indexStep1 = find(abs(angles) > MAXangle);

angles(indexStep1) = sign(angles(indexStep1))*MAXangle;

% Compensate for foil in presence of body; body in presece of foil

% Pitts et.al (1957)

angles = ([1;1]*(K.Kbf+K.Kbf)).*angles;

temp = [body,angles];

% Nondim lift in body frame for each section

Step1 = temp.*CLA;

%%

% Calculate lift due to deflection of control surfaces

% (Step-2 in my Msc Report)

% and add the lift induced drag...

%%

angles = [ALPHA;BETA];

angles = angles(:,[2:size(angles,2)]); % Extract Control surfaces

CLAcs = CLA(:,[2:size(CLA,2)]); % Extract Control surfaces

ControlInput = Uc(2:length(Uc));

% Check for correct input%%%%%%%%%%%%%%%%%%%%%%%%

temp = find(abs(ControlInput)>MAXcontrolInput); %

ControlInput(temp) = sign(ControlInput(temp))*MAXcontrolInput;

if ~isempty(temp);

warning([’Consider saturation on your control surfaces, DeltaCom > ’,MAXcontrolInput]);

end%

clear temp; %

%%%

indexStep2 = find(CLAcs); % Find indexes corresponding to Uc...

% which are greater than MAXangle

effAngles = 0*angles; % Initialize martix

for i=1:length(indexStep2)

[ned, sid] = ind2sub(size(CLAcs), indexStep2(i));

effAngles(ned,sid) = effAngles(ned,sid) + ControlInput(sid);

if find(abs(angles(indexStep2(i))+ControlInput(sid)) > MAXangle);

if find(indexStep1 == indexStep2(i))

% Deflection do not produce additional lift,

% which means that we can set the deflection to zero...

ControlInput(sid) = 0;

else

% The effective lift has reached "saturation",

% which means that we change the effective deflection

ControlInput(sid) = sign(ControlInput(sid))*...

(abs(ControlInput(sid)) - ((abs(angles(indexStep2(i))+ControlInput(sid))) - MAXangle));

end % If

B.1. hde-toolbox 79

end % If

end % For

% Step-2 including "Foil body interference factors" (Pitts et.al, 1957)

Step2 = ([1;1]*[(ControlInput’).*(K.Kfb+K.Kbf+K.kfb+K.kbf)]).*CLAcs;

Step2 = [zeros(size(Step2,1),1), Step2];

LiftIndDrag = ([1;1]*[(ControlInput’).*(K.kfb+K.kbf)] +...

(angles).*([1;1]*(K.Kbf+K.Kfb)) ...

).*CLAcs;

OEF = 0.87; % Oswald efficiency factor (Nahon,1996 &)

LiftIndDrag = sum(LiftIndDrag,1);

LiftIndDrag = 1/(pi*3.2*OEF)*LiftIndDrag.^2;

function Fb = calcForceMoment(alpha, beta, Fc, Xhc)

Ftemp = [];

Mtemp = [];

for i = 1:size(alpha,2);

Rya =[cos(alpha(i)) 0 sin(alpha(i));...

0 1 0;...

-sin(alpha(i)) 0 cos(alpha(i))];

Rzb = [cos(beta(i)) sin(beta(i)) 0;...

-sin(beta(i)) cos(beta(i)) 0;...

0 0 1];

Fi = Rya’*Rzb’*Fc(:,i);

Ftemp = [Ftemp, Fi];

Mtemp = [Mtemp, Smtrx(Xhc(:,i))*Fi];

end

Fb = sum([Ftemp;Mtemp],2);

function S = Smtrx(r)

% S = SMTRX(r) computes the 3x3 vector cross product matrix S=-S’

% such that rxt = S(r)t is true for all 3x1 vectors r and t

%

% Author: Thor I. Fossen

% Date: 14th June 2001

% Revisions:

S = [0 -r(3) r(2)

r(3) 0 -r(1)

-r(2) r(1) 0];

B.1.2 HDE.m

function varargout = hde(varargin)

% HDE - Toolbox for estimation of hydrodynamic parameters for a submerged body

% of revolution

%

% HDE(’’) - Open a dialogbox where the user can choose between the different

% modes

% HDE(’load’) - Open a dialog box where the user can specify a

% previously saved session

% HDE(’torpedo’) - Start a new session where the shape of the vehicle is

% given by torpedo polynomials

% HDE(’vertex’) - Start a new session where the shape of the vehicle is

% constructed by cubic hermite interpolation, between

% vertexes specified by the user

% HDE(filename.hde) - Open the HDE model {filename.hde}

%

% Author: Håvard Bø

% Date: May 2003

% Revisions:

80 Appendix B. MatlabSource code

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’gui_Name’, upper(mfilename), ...

’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @hde_OpeningFcn, ...

’gui_OutputFcn’, @hde_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin & isstr(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

function hde_OpeningFcn(hObject, eventdata, handles, varargin)

global FOIL BODY

if isempty(varargin)

% Display a dialogbox, where the user can choose to

% load a model from file, or start a new one

buttonHeight = 2.3; buttonLength = 25; ButtonSpace = 0.2;

fig_dim = [4*buttonHeight + 3*ButtonSpace, buttonLength*1.5];

midFig = (fig_dim(2)/2)-buttonLength/2;

% Define placement of buttons

LoadButtonPos = [midFig, 2.5*buttonHeight + 2*ButtonSpace , buttonLength, buttonHeight];

VertexButtonPos = [midFig, 1.5*buttonHeight + ButtonSpace , buttonLength, buttonHeight];

TorpedoButtonPos = [midFig, buttonHeight/2 , buttonLength, buttonHeight];

temp = get(handles.figure1,’position’);

arr_fig = figure(’unit’,’characters’,’NumberTitle’,’off’,’Menubar’,’none’,’resize’,’off’,...

’position’, [temp(1) temp(2) fig_dim(2) fig_dim(1)]);

clear temp

Load_but = uicontrol(’Style’,’pushbutton’,’unit’,’characters’,’String’,’Load model from file’,...

’position’,LoadButtonPos, ’callback’,’uiresume’,’tag’,’Load’);

Vertex_but = uicontrol(’Style’,’pushbutton’,’unit’,’characters’,’String’,’New vertex model’,...

’position’,VertexButtonPos, ’callback’,’uiresume’,’tag’,’vertex’);

Torpedo_but = uicontrol(’Style’,’pushbutton’,’unit’,’characters’,’String’,’New torpedo model’,...

’position’,TorpedoButtonPos, ’callback’,’uiresume’,’tag’,’torpedo’);

set(arr_fig, ’Name’, ’HDE, select mode’)

uiwait;

but = gco;

try

cmd = lower(get(but,’tag’));

close

hde(cmd)

catch

disp(’Ending hde...’)

close

end

% The user want a body where the shape is given by torpedo polynomials

elseif strcmp(lower(char(varargin(1))), ’torpedo’)

% Set default input

BODY.Profile = ’torpedo’;

BODY.Param.a = str2double(get(handles.a_Input, ’String’));

BODY.Param.b = str2double(get(handles.b_Input, ’String’));

BODY.Param.d = str2double(get(handles.D_Input, ’String’));

B.1. hde-toolbox 81

BODY.Param.n = str2double(get(handles.n_Input, ’String’));

BODY.Param.theta = str2double(get(handles.theta_Input, ’String’));

BODY.Param.Lpp = str2double(get(handles.Lpp_Input, ’String’));

BODY.Param.Lpoint = str2double(get(handles.Lpoint_Input, ’String’));

BODY.Data.Xm = [];

BODY.Data.AutoXm = 1;

set(handles.Xm_Input,’Enable’,’off’)

set(handles.AutCalcXm,’value’,1);

set(handles.SepPoint_Input,’enable’,’off’)

set(handles.addVertex_PushButton,’Visible’,’off’)

set(handles.editVertex_PushButton,’Visible’,’off’)

set(handles.BG_Text,’visible’,’on’)

set(handles.BG_Input,’visible’,’on’)

set(handles.RigidBody_PushButton,’visible’,’off’)

set(handles.MrbAuto_Checkbox,’value’,1)

set(handles.SepPointAuto_Checkbox,’value’,1)

set(handles.SepPoint_Input,’enable’,’off’)

plotStartFig(hObject, eventdata, handles)

% The user want to specify the body with the aid of vertexes

elseif strcmp(lower(char(varargin(1))), ’vertex’)

set(handles.Lpoint_Input,’Visible’,’off’)

set(handles.a_Input,’Visible’,’off’)

set(handles.b_Input,’Visible’,’off’)

set(handles.D_Input,’Visible’,’off’)

set(handles.theta_Input,’Visible’,’off’)

set(handles.n_Input,’Visible’,’off’)

set(handles.torpedoDescription(:), ’Visible’, ’off’)

set(handles.torpedoDimensions(:), ’Visible’, ’off’)

set(handles.BG_Text,’visible’,’on’)

set(handles.BG_Input,’visible’,’on’)

set(handles.RigidBody_PushButton,’visible’,’off’)

set(handles.MrbAuto_Checkbox,’value’,1)

set(handles.SepPointAuto_Checkbox,’value’,1)

set(handles.SepPoint_Input,’style’,’text’)

set(handles.Xm_Input,’Enable’,’off’)

set(handles.AutCalcXm,’value’,1);

set(handles.SepPoint_Input,’enable’,’off’)

BODY.Data.Xm = [];

BODY.Data.AutoXm = 1;

BODY.Profile = ’vertex’;

BODY.Param.Lpp = 1;

BODY.Param.x = [0 BODY.Param.Lpp];

BODY.Param.r = [0 0];

set(handles.Lpp_Input, ’string’, sprintf(’%1.3f’,BODY.Param.Lpp))

plotVertex(hObject, eventdata, handles)

elseif strcmp(lower(char(varargin(1))), ’load’)

load_model_Callback(hObject, eventdata, handles)

else

try % load model, filename given by varargin(1)

load_model_Callback(hObject, eventdata, handles, char(varargin(1)))

catch % Function call is not valid

errorMsg = sprintf(’Function call %s is not reckognized as a valid input\n’, char(varargin));

errorMsg = sprintf(’%sAvailable inputs are: \n’,errorMsg);

errorMsg = sprintf(’%s- filename.hde\n’,errorMsg);

errorMsg = sprintf(’%s- torpedo \n’,errorMsg);

errorMsg = sprintf(’%s- vertex \n’,errorMsg);

errorMsg = sprintf(’%s- load\n’,errorMsg);

error(sprintf(’%s’,errorMsg));

end % try

82 Appendix B. MatlabSource code

end % if

% Choose default command line output for hde

function varargout = hde_OutputFcn(hObject, eventdata, handles)

disp(sprintf(’%s’,eventdata));

%varargout{1} = handles.output;

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% create functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

function SepPoint_Input_CreateFcn(hObject, eventdata, handles)

global BODY

if ispc; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

set(hObject,’value’,1)

BODY.Data.AutoSep = 1;

BODY.Data.sepPoint = [];

function Lpp_Input_CreateFcn(hObject, eventdata, handles)

if ispc set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

% --- Executes during object creation, after setting all properties.

function velocityInput_CreateFcn(hObject, eventdata, handles)

global BODY

if ispc; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

BODY.Data.velocity = str2double(get(hObject, ’string’));

function Lpoint_Input_CreateFcn(hObject, eventdata, handles)

if ispc set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

% --- Executes during object creation, after setting all properties.

function a_Input_CreateFcn(hObject, eventdata, handles)

if ispc; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

function b_Input_CreateFcn(hObject, eventdata, handles)

if ispc; set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

function D_Input_CreateFcn(hObject, eventdata, handles)

if ispc ; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

function theta_Input_CreateFcn(hObject, eventdata, handles)

function n_Input_CreateFcn(hObject, eventdata, handles)

if ispc; set(hObject,’BackgroundColor’,’white’);

B.1. hde-toolbox 83

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

function KinViscousity_Input_CreateFcn(hObject, eventdata, handles)

global BODY

if ispc; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

BODY.Data.KinViscousity = str2double(get(hObject, ’string’))*10^-6;

function AUVfigure_CreateFcn(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function FeedBack_Text_CreateFcn(hObject, eventdata, handles)

outText(1:10,1:150) = ’ ’;

set(hObject,’String’, outText);

if ispc; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

function Xm_Input_CreateFcn(hObject, eventdata, handles)

global BODY

if ispc; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

function BG_Input_CreateFcn(hObject, eventdata, handles)

global BODY

if ispc; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

BODY.Data.BG = str2double(get(hObject, ’string’));

%%%

%%%

%%%%%%%%%% End of CreateFcn

%%%

%%%%%%%%%% Start of Callback functions

%%%

function a_Input_Callback(hObject, eventdata, handles)

global BODY

temp = str2double(get(hObject,’String’));% returns contents of a_Input as a double

oldA = BODY.Param.a ;

if isnan(temp) || ~min(size(temp) == [1 1])

errMsg = ’Incorrect input, Ln is NaN’;

set(hObject, ’string’, sprintf(’%1.4f’,oldA))

elseif temp < 0

errMsg = ’Incorrect input, Ln < 0’;

set(hObject, ’string’, sprintf(’%1.4f’,oldA))

elseif temp > BODY.Param.b

errMsg = ’Incorrect input, Ln > Lt’;

set(hObject, ’string’, sprintf(’%1.4f’,oldA))

else

BODY.Param.a = temp;

set(hObject, ’string’, sprintf(’%1.4f’,BODY.Param.a))

end

function Lpp_Input_Callback(hObject, eventdata, handles)

global BODY FOIL

temp = str2double(get(hObject, ’String’));

84 Appendix B. MatlabSource code

oldLpp = BODY.Param.Lpp;

if isnan(temp)

errMsg = ’Incorrect input, Lpp = NaN’;

set(hObject, ’String’, sprintf(’%1.4f’,oldLpp));

else

switch lower(BODY.Profile)

case ’torpedo’

if temp > BODY.Param.Lpoint

BODY.Param.Lpoint = temp;

BODY.Param.Lpp = temp;

set(handles.Lpoint_Input,’String’,sprintf(’%1.4f’,BODY.Param.Lpoint));

set(hObject,’String’,sprintf(’%1.4f’,BODY.Param.Lpp));

elseif temp < BODY.Param.b

errMsg = ’Incorrect input, Lpp < Lt’;

set(hObject,’String’,sprintf(’%1.4f’,BODY.Param.Lpp));

else

BODY.Param.Lpp = temp;

set(hObject,’String’,sprintf(’%1.4f’,BODY.Param.Lpp));

end % if temp>Lpoint

case ’vertex’

if temp <= 0

errMsg = ’Incorrect input, Lpp <= 0’;

set(hObject, ’String’, sprintf(’%1.4f’,BODY.Param.Lpp));

else

BODY.Param.Lpp = temp;

set(hObject, ’String’, sprintf(’%1.4f’,BODY.Param.Lpp));

BODY.Param.x = temp/oldLpp * BODY.Param.x; % Rescale

BODY.Param.r = temp/oldLpp * BODY.Param.r; % Rescale

errMsg = ’Rescaling body’;

BODY = bodyCalc(BODY);

rescaleFoil(hObject, eventdata, handles, temp/oldLpp);

plotShape(hObject, eventdata, handles);

try plotFoil(hObject, eventdata, handles, handles.AUVfigure);

catch

errMsg = sprintf(’%s\nDid not succeed to rescale foil section(s)’,errMsg);

end % try

end % Check of input for vertex body

otherwise

errMsg = sprintf(’%s\nDid not recognize body profile’,errMsg);

end % switch

end %if

try writeToFeedback(hObject, eventdata, handles, errMsg);end

% save changes in handle

guidata(hObject, handles)

%%%

%%%%%%%%%%%%%%%%%%%%%%%%% End of Lpp_Input Callback

%%%

function b_Input_Callback(hObject, eventdata, handles)

global BODY

temp = str2double(get(hObject,’String’));% returns contents of b_Input as a double

oldB = BODY.Param.b;

if isnan(temp) || ~min(size(temp) == [1 1])

errMsg = ’Incorrect input, Lt is NaN’;

set(hObject, ’string’, sprintf(’%1.4f’,oldB))

elseif temp < BODY.Param.a

errMsg = ’Incorrect input, Lt < Ln’;

set(hObject, ’string’, sprintf(’%1.4f’,oldB))

elseif temp > BODY.Param.Lpp

errMsg = ’Incorrect input, Lt > Lpp’;

set(hObject, ’string’, sprintf(’%1.4f’,oldB))

else

BODY.Param.b = temp;

B.1. hde-toolbox 85

set(hObject, ’string’, sprintf(’%1.4f’,BODY.Param.b))

end

try writeToFeedback(hObject, eventdata, handles, errMsg); end

function D_Input_Callback(hObject, eventdata, handles)

global BODY

temp = str2double(get(hObject,’string’));

if isnan(temp) || ~min(size(temp) == [1 1])

errMsg = ’Incorrect input, D is NaN’;

set(hObject, ’string’, sprintf(’%1.4f’,BODY.Param.d));

elseif temp <=0

errMsg = ’Incorrect input, D must be a positive number’;

set(hObject, ’string’, sprintf(’%1.4f’,BODY.Param.d))

else

BODY.Param.d = temp;

set(hObject, ’string’, sprintf(’%1.4f’,BODY.Param.d))

end

try

writeToFeedback(hObject, eventdata, handles, errMsg)

end

function theta_Input_Callback(hObject, eventdata, handles)

global BODY

temp = str2double(get(hObject,’string’));

if isnan(temp) || ~min(size(temp) == [1 1])

errMsg = ’Incorrect input, theta is NaN’;

set(hObject, ’string’, sprintf(’%2.2f’,BODY.Param.theta));

elseif temp <0 || temp > 50

errMsg = ’Incorrect input, theta shpuld be in range (0,50)’;

set(hObject, ’string’, sprintf(’%2.2f’,BODY.Param.theta))

else

BODY.Param.theta = temp;

set(hObject, ’string’, sprintf(’%2.2f’,BODY.Param.theta))

end

try

writeToFeedback(hObject, eventdata, handles, errMsg)

end

function n_Input_Callback(hObject, eventdata, handles)

global BODY

temp = str2double(get(hObject,’String’));% returns contents of n_Input as a double

oldN = BODY.Param.n;

N_min = 0;

N_max = 5;

if isnan(temp) || ~min(size(temp) == [1 1])

errMsg = ’Incorrect input, n is NaN’;

set(hObject, ’string’, sprintf(’%1.2f’,BODY.Param.n))

elseif temp < N_min || temp > N_max

errMsg = sprintf(’Incorrect input, should be in range %g<n<%g’,N_min,N_max);

set(hObject, ’string’, sprintf(’%1.2f’,BODY.Param.n))

else

BODY.Param.n = temp;

set(hObject, ’string’, sprintf(’%1.2f’,BODY.Param.n))

end

try writeToFeedback(hObject, eventdata, handles, errMsg); end

function Lpoint_Input_Callback(hObject, eventdata, handles)

global BODY

86 Appendix B. MatlabSource code

oldL = BODY.Param.Lpoint;

temp = str2double(get(hObject,’string’));

if isnan(temp) || ~min(size(temp) == [1 1])

errMsg = ’Incorrect input, L is NaN’;

set(hObject, ’string’, oldL)

elseif temp < 0

errMsg = ’Incorrect input, L should be a positive number’;

set(hObject, ’string’, sprintf(’%1.4f’,oldL))

elseif temp < BODY.Param.a

BODY.Param.a = temp;

BODY.Param.b = temp;

BODY.Param.Lpp = temp;

BODY.Param.Lpoint = temp;

set(handles.a_Input,’String’,sprintf(’%1.4f’,BODY.Param.a));

set(handles.b_Input,’String’,sprintf(’%1.4f’,BODY.Param.b));

set(handles.Lpp_Input,’String’,sprintf(’%1.4f’,BODY.Param.Lpp));

set(hObject,’String’,sprintf(’%1.4f’,BODY.Param.Lpoint));

elseif temp < BODY.Param.b

BODY.Param.b = temp;

BODY.Param.Lpp = temp;

BODY.Param.Lpoint = temp;

set(handles.b_Input,’String’,sprintf(’%1.4f’,BODY.Param.b));

set(handles.Lpp_Input,’String’,sprintf(’%1.4f’,BODY.Param.Lpp));

set(hObject,’String’,sprintf(’%1.4f’,BODY.Param.Lpoint));

elseif temp < BODY.Param.Lpp

BODY.Param.Lpp = temp;

BODY.Param.Lpoint = temp;

set(handles.Lpp_Input,’String’,sprintf(’%1.4f’,BODY.Param.Lpp));

set(hObject,’String’,sprintf(’%1.4f’,BODY.Param.Lpoint));

else

BODY.Param.Lpoint = temp;

set(hObject,’String’,sprintf(’%1.4f’,BODY.Param.Lpoint));

end

try writeToFeedback(hObject, eventdata, handles, errMsg); end

function KinViscousity_Input_Callback(hObject, eventdata, handles)

global BODY

max = 2;

min = 0.5;

temp = str2double(get(hObject, ’string’));

if isnan(temp) || ~min(size(temp) == [1 1])

errMsg= ’Kinematic viscosity is NaN’;

set(hObject, ’String’,sprintf(’%1.4f’,BODY.Data.KinViscousity))

elseif temp<min || temp > max

errMsg = [’Incorrect input, Kinematic viscosity should be in range (’, min,’,’ max ’)*10^-6’];

set(hObject, ’String’,sprintf(’%1.4f’,BODY.Data.KinViscousity))

else

BODY.Data.KinViscousity = temp*10^-6;

set(hObject, ’String’,sprintf(’%1.2f’,temp))

end

try writeToFeedback(hObject, eventdata, handles, errMsg); end

function velocityInput_Callback(hObject, eventdata, handles)

global BODY

temp = str2double(get(hObject, ’string’));

if isnan(temp)

temp = BODY.Data.velocity;

elseif temp<=0

errMsg(’Velocity must be a positive number’);

temp = BODY.Data.velocity;

writeToFeedback(hObject, eventdata, handles, errMsg)

end

BODY.Data.velocity = temp(1);

B.1. hde-toolbox 87

set(hObject, ’string’,sprintf(’%1.3f’,BODY.Data.velocity));

function FeedBack_Text_Callback(hObject, eventdata, handles)

% --- Executes on button press in AddWing_PushButton.

function AddWing_PushButton_Callback(hObject, eventdata, handles)

global BODY FOIL

if ~isfield(BODY, ’shape’)

textString = sprintf(’Body must be generated before a foil can be added\n’);

textString = sprintf(’%s=> Geometry is not specified\n’,textString);

return

end

H = FOILDIALOG;

if ~validFoil_Input(hObject, eventdata, handles, H);

textString = ’Incorrect input, foilsection not added’;

writeToFeedback(hObject, eventdata, handles, textString);

return

end

if isempty(FOIL);

FOIL = foilalone(foilCalc(H, BODY), 0, BODY); % First foil-section?

textString = sprintf(’%s Foilsection added successfully...’, H.Plane);

else

NewFoil = foilalone(foilCalc(H, BODY), 0, BODY);

for i =1:length(FOIL)

if strcmp(lower(FOIL(i).Plane),lower(H.Plane))

FOIL(i) = NewFoil;

textString = sprintf(’%s Foilsection replaced successfully...’, H.Plane);

break

elseif i == length(FOIL)

FOIL(i+1) = NewFoil;

textString = sprintf(’%s Foilsection added successfully...’, H.Plane);

else

textString = ’Something is wrong in AddWing_PushButton_Callback’;

end % if FOIL(i).Plane == H.Plane

end % for

end % if length(FOIL)==0;

eval(sprintf(’set(handles.%s_profileText,’’string’’,’’%s’’)’,H.Plane,H.Profile));

eval(sprintf(’set(handles.%s_LeText,’’string’’,’’%1.3f’’)’,H.Plane,H.Xo));

eval(sprintf(’set(handles.%s_SpanText,’’string’’,’’%1.3f’’)’,H.Plane,H.Span));

eval(sprintf(’set(handles.%s_CrText,’’string’’,’’%1.4f’’)’,H.Plane,H.Cr));

eval(sprintf(’set(handles.%s_CtText,’’string’’,’’%1.4f’’)’,H.Plane,H.Ct));

plotShape(hObject, eventdata, handles);

plotFoil(hObject, eventdata, handles, handles.AUVfigure);

writeToFeedback(hObject, eventdata, handles, textString);

% --- Executes on button press in RunApplication_PushButton.

function RunApplication_PushButton_Callback(hObject, eventdata, handles)

global BODY FOIL

BODY.Param.Rho = 1025; % Water density

if length(BODY)==0 || length(FOIL)==0

errMsg = sprintf(’Body and foil(s) must be present before running application\n’);

writeToFeedback(hObject, eventdata, handles, errMsg);

else

allright = 1;

try % To sort the control surface planes

planes = [];

for k = 1:length(FOIL)

planes = [planes;FOIL(k).Plane];

88 Appendix B. MatlabSource code

end

planes = cellstr(char(planes));

[planes, planeOrder] = sort(planes);

FOIL = FOIL(planeOrder);

clear planes planeOrder

catch

allright = 0;

errMsg = sprintf(’Could not sort control planes\n%s’,lasterr);

writeToFeedback(hObject, eventdata, handles, errMsg);

end

Rho = BODY.Param.Rho;

try BODY = calcvolumSurface(bodyCalc(BODY));

if get(handles.AutCalcXm,’value’);

BODY.Data.Xm = BODY.Xc;

set(handles.Xm_Input,’string’, sprintf(’%1.4f’,BODY.Data.Xm))

%BODY.Data = calcvolumSurface(bodyCalc(BODY));

end

Xm = BODY.Data.Xm;

catch

allright = 0;

errMsg = sprintf(’Error in calcvolumSurface\n%s’,lasterr);

writeToFeedback(hObject, eventdata, handles, errMsg);

end

try FOIL = foilcalc(FOIL,BODY);

catch

allright = 0;

errMsg = sprintf(’Error in foilCalc\n%s’,lasterr);

writeToFeedback(hObject, eventdata, handles, errMsg);

end

if get(handles.MrbAuto_Checkbox,’value’) %if autoCalc Rigid body

BG = str2double(get(handles.BG_Input,’string’));

try

BODY.Mrb = mrigidbody(BODY, FOIL, BG, Xm, Rho);

BODY.Data.AutoMrb = 1;

catch

allright = 0;

errMsg = sprintf(’Error in mRigidBody\n%s’,lasterr);

writeToFeedback(hObject, eventdata, handles, errMsg);

end

else BODY.Data.AutoMrb = 0;

end

try BODY.Ma = addedmass(BODY,FOIL, Xm, Rho);

catch

allright = 0;

errMsg = sprintf(’Error in addedMass\n%s’,lasterr);

writeToFeedback(hObject, eventdata, handles, errMsg);

end

try

BODY.nonDim.Mrb = massNonDim(BODY.Mrb, BODY.Param.Lpp, Rho); % NondimMass

BODY.nonDim.Ma = massNonDim(BODY.Ma, BODY.Param.Lpp, Rho); % NondimMass

catch

allright = 0;

errMsg = sprintf(’Error in massNonDim\n%s’,lasterr);

writeToFeedback(hObject, eventdata, handles, errMsg);

end

try

FOIL = foilalone(FOIL,Xm, BODY);

catch

B.1. hde-toolbox 89

allright = 0;

errMsg = sprintf(’Error in foilalone.m \n%s’,lasterr);

writeToFeedback(hObject, eventdata, handles, errMsg);

end

try

BODY = bodyalone(BODY,Xm);

catch

allright = 0;

errMsg = sprintf(’Error in bodyalone.m\n%s’,lasterr);

writeToFeedback(hObject, eventdata, handles, errMsg);

end

try

BODY.CDoINFO = ’Drag, foil body combination (based on Lpp^2)’;

[BODY.FoilBody, BODY.CDo] = foilBodyComb(FOIL,BODY,Xm);

catch

allright = 0;

errMsg = sprintf(’Error in foilBodyComb.m\n%s’,lasterr);

writeToFeedback(hObject, eventdata, handles, errMsg);

end

try

if BODY.Data.AutoSep

SepPointAuto_Checkbox_Callback(hObject, eventdata, handles, ’Hei’);

end

catch

allright = 0;

errMsg = sprintf(’Simon says, something is wrong’,lasterr);

writeToFeedback(hObject, eventdata, handles, errMsg);

end

% try

% BODY.D_Info = ’Damping matrix’;

% [BODY.D,BODY.nonDim.D] = dampingTerms(BODY,FOIL);

% catch

% allright = 0;

% errMsg = sprintf(’Error in dampingTerms\n%s’,lasterr);

% writeToFeedback(hObject, eventdata, handles, errMsg);

% end

%

% try

% BODY.T_Info = ’Rudder actuator configuration matrix’;

% [BODY.T, BODY.nonDim.T] = rudderTerms(BODY,FOIL);

% catch

% allright = 0;

% errMsg = sprintf(’Error in rudderTerms\n%s’,lasterr);

% writeToFeedback(hObject, eventdata, handles, errMsg);

% end

if allright

BODY.Info = sprintf(’Parameter estimation terminated successfully, %s’,datestr(clock,0));

textString = sprintf(’%s’,BODY.Info);

textString = sprintf(’%s. Model written to:\n’,textString);

pathName = what;

pathName = pathName.path ;

fileName = ’output’;

fileName = [pathName filesep fileName];

textString = sprintf(’%s%s.hde’,textString, fileName);

plot3D(hObject, eventdata, handles)

save_model_Callback(hObject, eventdata, handles,fileName);

writeToFeedback(hObject, eventdata, handles, textString);

if get(handles.Make_Report,’value’) %if autogenerate report

makeFigures(hObject, eventdata, handles)

makeReport(hObject, eventdata, handles);

90 Appendix B. MatlabSource code

end

writeToFeedback(hObject, eventdata, handles, ’**********************’);

end % if allright

end %if foil

function CreateGeometry_PushButton_Callback(hObject, eventdata, handles)

global BODY FOIL

switch lower(BODY.Profile)

case ’vertex’

BODY = bodyCalc(BODY);

plotShape(hObject, eventdata, handles)

errMsg = ’Body geometry plotted’;

try

plotFoil(hObject, eventdata, handles,handles.AUVfigure)

catch

errMsg = sprintf(’%s\nNo foil present’)

end

writeToFeedback(hObject, eventdata, handles, errMsg);

case ’torpedo’

n = str2double(get(handles.n_Input,’String’));

a = str2double(get(handles.a_Input,’String’));

b = str2double(get(handles.b_Input,’String’));

Lpoint = str2double(get(handles.Lpoint_Input,’String’));

Lpp = str2double(get(handles.Lpp_Input,’String’));

theta = str2double(get(handles.theta_Input,’String’));

d = str2double(get(handles.D_Input,’String’));

writeToFeedback(hObject, eventdata, handles, ’Checking input’)

if max(isnan([n, a, b, Lpoint, Lpp theta, d]))

errMsg = sprintf(’Incorrect %s input, NaN’,get(handles.shapeParamText,’String’));

elseif n<=0.5 || n>4

errMsg = (sprintf(’Incorrect input, n=%d\nShould be in range 0.5<=n<4’,n));

elseif a<0||a>=b

errMsg = (sprintf(’Incorrect input, Ln=%d\nShould be a positive number 0<Ln<Lt’,a));

elseif b>=Lpp

errMsg = (sprintf(’Incorrect input, Lt=%d\nShould be a positive number Ln<Lt<Lpp’,b));

elseif theta<=0||theta>50

errMsg = (sprintf(’Incorrect input, theta=%d\nShould be a positive number 0<theta<50’,theta));

elseif Lpp>Lpoint||Lpp<=0

errMsg = (sprintf(’Incorrect input, Lpp=%d\nShould be a positive number Lt<Lpp<=L’,Lpp));

elseif d<0

errMsg = (sprintf(’Incorrect input, D=%d\nShould be a positive number’,d));

else

writeToFeedback(hObject, eventdata, handles, ’Creating geometry...’);

try

Body = BODY; % Make copy of current state

Body.Profile = ’torpedo’;

Body.Param.n = n;

Body.Param.a = a;

Body.Param.b = b;

Body.Param.Lpoint = Lpoint;

Body.Param.Lpp = Lpp;

Body.Param.theta = theta;

Body.Param.d = d;

BODY = bodyCalc(Body);

clear Body % clear temporary variable

plotShape(hObject, eventdata, handles)

errMsg = ’Body geometry plotted’;

catch

errMsg = ’Something is wrong’;

errMsg = sprintf(’%s\n%s’,errMsg, lasterr);

end % try

end % if correct input, (if max(isnan([...])

B.1. hde-toolbox 91

try

plotFoil(hObject, eventdata, handles, handles.AUVfigure)

catch

errMsg = sprintf(’%s\nNo foil present’)

end

writeToFeedback(hObject, eventdata, handles, errMsg);

otherwise

error(’BODY.profile is not reckognized’);

end % switch / case

%%

%%%%%%%%%%% End of CreateGeometry_PushButton_Callback

%%

% --- Executes on button press in Help_PushButton.

function Help_PushButton_Callback(hObject, eventdata, handles)

doc hde;

% --- Executes on button press in Make_Report.

function Make_Report_Callback(hObject, eventdata, handles)

% --- Executes on button press in addVertex_PushButton.

function addVertex_PushButton_Callback(hObject, eventdata, handles)

global BODY

axes(handles.AUVfigure);

cAxis = axis;

plotVertex(hObject, eventdata, handles, ’do not change axis’); % Update the figure

% Loop, picking up the points.

% set(textInfo,’visible’,’off’)

but = 1;

while but == 1 % As long as the left mouse button is clicked

[xi,yi,but] = ginput(1); % Read the point from the figure

if yi<=0

errorMsg = sprintf(’Incorrect datapoint\n => vertex must have a positive radius’);

elseif(xi<=0 || xi>= BODY.Param.Lpp)

errorMsg = sprintf(’Incorrect datapoint\n => vertex Xpos must be in range (0,Lpp)’)

elseif but==1 % The user didn’t rightclick

x = [BODY.Param.x,xi];

y = [BODY.Param.r,yi];

xy = sortrows([x;y]’)’;

BODY.Param.x = xy(1,:);

BODY.Param.r = xy(2,:);

plotVertex(hObject, eventdata, handles, ’do not change axis’); % Update the figure

else

errorMsg = sprintf(’Ending %s mode’,get(handles.addVertex_PushButton,’String’));

end % if

try

writeToFeedback(hObject, eventdata, handles, errorMsg);

catch

% It is not necessary do do anything

end % try

end % while

%%

%%%%%%%%%%%% end of addVertex_PushButton_Callback

%%

% --- Executes on button press in editVertex_PushButton.

function editVertex_PushButton_Callback(hObject, eventdata, handles)

global BODY FOIL

pos = get(gco, ’position’) + get(gcf, ’position’);

92 Appendix B. MatlabSource code

x = BODY.Param.x(2:length(BODY.Param.x)-1);

r = BODY.Param.r(2:length(BODY.Param.r)-1);

xy = editVertexes([x;r], pos);

errorMsg = ’Empty matrix returned...’;

if ~isempty(xy)

if max(max(isnan(xy))); errorMsg(’Incorrect Input, NaN’);

else

xy = sortrows(xy’)’; % Sort, ascending

keepVertex = find(sum(xy,1)~=0); % elements to keep

xy = xy(:,keepVertex); % (0,0) elements are removed

xNew = [BODY.Param.x(1), xy(1,:), BODY.Param.x(length(BODY.Param.x))];

yNew = [BODY.Param.r(1), xy(2,:), BODY.Param.r(length(BODY.Param.r))];

if min(xNew)<0 || max(xNew)> BODY.Param.Lpp;

errorMsg = ’Incorrect input, vertexes must be in range 0<x<Lpp’;

elseif min(xy(2,:)) <= 0

errorMsg = ’Incorrect input, vertexes must be in range 0 < y’;

else

try

interp1(xNew,yNew,0);

BODY.Param.x = xNew;

BODY.Param.r = yNew;

errorMsg = ’Vertexes updated successfully’;

errorMsg = sprintf(’%s\nRecalculating body shape’,errorMsg);

BODY = bodycalc(BODY);

plotShape(hObject, eventdata, handles);

try

if ~isempty(FOIL)

FOIL = foilcalc(FOIL,BODY);

plotFoil(hObject, eventdata, handles, handles.AUVfigure);

errorMsg = sprintf(’%s\n=>Foil(s) reconfigured’,errorMsg);

end

catch

errorMsg = sprintf(’%s\n=> Could not reconfigure foilsection(s)’,errorMsg);

end

catch

errorMsg = ’Incorrect input, data abscissae should be distinct’;

end % try

end % if max(max(isnan(...)))

end %if

else

errorMsg = ’No changes executed’;

end % ~isempty

writeToFeedback(hObject, eventdata, handles, errorMsg)

%%

%%%%%%%%%%%% end of editVertex_PushButton_Callback

%%

function Xm_Input_Callback(hObject, eventdata, handles)

global BODY

temp = str2double(get(hObject, ’string’));

if isnan(temp) || ~min(size(temp) == [1 1])

errMsg= ’Xm is NaN’;

set(hObject, ’String’,sprintf(’%1.4f’,BODY.Data.Xm))

else

BODY.Data.Xm = temp;

set(hObject, ’String’,sprintf(’%1.4f’,BODY.Data.Xm))

end

try writeToFeedback(hObject, eventdata, handles,errMsg); end

% --- Executes on button press in AutCalcXm.

function AutCalcXm_Callback(hObject, eventdata, handles)

global BODY

if get(hObject,’value’) % Want to calculate rigid body automatically

B.1. hde-toolbox 93

BODY.Data.AutoXm = 1;

set(handles.Xm_Input,’Enable’,’off’);

set(handles.Xm_Input,’String’,’N/A’)

BODY.Data.Xm = [];

else

BODY.Data.AutoXm = 0;

set(handles.Xm_Input,’Enable’,’on’);

BODY.Data.Xm = BODY.Param.Lpp/2;

set(handles.Xm_Input,’String’,sprintf(’%1.4f’,BODY.Data.Xm));

end

function BG_Input_Callback(hObject, eventdata, handles)

global BODY

temp = str2double(get(hObject, ’string’));

if isnan(temp) || ~min(size(temp) == [1 1])

errMsg = ’BG is NaN’;

set(hObject, ’String’,sprintf(’%1.4f’,BODY.Data.BG))

else

if temp<0; errMsg = ’Warning, BG<0 (metacentric unstable)’;end

BODY.Data.BG = temp;

set(hObject, ’String’,sprintf(’%1.4f’,BODY.Data.BG))

end

try writeToFeedback(hObject, eventdata, handles, errMsg); end

% --- Executes on button press in MrbAuto_Checkbox.

function MrbAuto_Checkbox_Callback(hObject, eventdata, handles)

global BODY

if get(hObject,’value’) % Want to calculate rigid body automatically

set(handles.RigidBody_PushButton,’visible’,’off’)

set(handles.BG_Input,’visible’,’on’)

set(handles.BG_Text,’visible’,’on’)

else

set(handles.RigidBody_PushButton,’visible’,’on’)

set(handles.BG_Input,’visible’,’off’)

set(handles.BG_Text,’visible’,’off’)

BODY.Ma = zeros(6,6); % Default value

end

% --- Executes on button press in RigidBody_PushButton.

function RigidBody_PushButton_Callback(hObject, eventdata, handles)

global BODY

pos = get(gco, ’position’) + get(gcf, ’position’);

pos = pos(1:2);

if isfield(BODY,’Mrb’)

if min(size(BODY.Mrb) == [6,6])

temp = editRigidBody(BODY.Mrb, pos);

else

temp = editRigidBody(zeros(6,6), pos);

end % if

else

temp = editRigidBody(zeros(6,6), pos);

end % if isfield()

if max(max(isnan(temp))) % if incorrect input format

errMsg = ’Incorrect input format (NaN)’

writeToFeedback(hObject, eventdata, handles, errMsg);

else

BODY.Mrb = temp;

end

% --- Executes on button press in SepPointAuto_Checkbox.

94 Appendix B. MatlabSource code

function SepPointAuto_Checkbox_Callback(hObject, eventdata, handles, varargin)

global BODY

if get(hObject,’value’) || ~isempty(varargin)

set(handles.SepPoint_Input,’Enable’,’off’);

BODY.Data.AutoSep = 1;

BODY.Data.sepPoint = [];

switch lower(BODY.Profile)

case ’torpedo’

sepPoint = BODY.Param.a; % Seperation point of torpedo

case ’vertex’

% The separation point is on the most negative curve slope

% for a stremlined body of revolution

n = 10; % Avrage the input in order to remove "noise"

Rtemp = [];

Xtemp = [];

for i =1:length(Ri)/n

if i*n<=length(x);temp = i*n ;else temp = length(x); end

Rtemp = [Rtemp; mean(Ri(1+(i-1)*n: temp))];

Xtemp = [Xtemp; mean(Xi(1+(i-1)*n: temp))];

end

[aTemp, bTemp] = min(diff(Rtemp));

sepPoint = Xtemp(bTemp); % Most negative slope

otherwise

error(’Something is wrong’);

end

BODY.Data.sepPoint = sepPoint;

set(handles.SepPoint_Input,’string’,sprintf(’%1.4f’,BODY.Data.sepPoint));

else

set(handles.SepPoint_Input,’Enable’,’on’);

BODY.Data.AutoSep = 0;

end

function SepPoint_Input_Callback(hObject, eventdata, handles)

global BODY

temp = str2double(get(hObject,’string’))

if isnan(temp) || ~min(size(temp) == [1 1])

errMsg = ’Incorrect dataformat, Xsep = NaN’;

BODY.Data.sepPoint = BODY.Param.Lpp/2;

set(hObject,’string’,sprintf(’%1.4f’,BODY.Data.sepPoint));

elseif temp<=0 || temp > BODY.Param.Lpp

errMsg = ’Incorrect input, sould be in range (0,Lpp)’;

BODY.Data.sepPoint = BODY.Param.Lpp/2;

set(hObject,’string’,sprintf(’%1.4f’,BODY.Data.sepPoint))

else

BODY.Data.sepPoint = temp;

set(hObject,’string’,sprintf(’%1.4f’,BODY.Data.sepPoint));

end

try writeToFeedback(hObject, eventdata, handles, errMsg); end

% --- Executes on button press in Exit_PushButton.

function Exit_PushButton_Callback(hObject, eventdata, handles)

clear global BODY % Remove variable from workspace

clear global FOIL

close

function load_model_Callback(hObject, eventdata, handles,varargin)

if isempty(varargin)

[fileName, filePath] = uigetfile({’*.hde’,’HDE model’},’Load an HDE model from file’);

else

filePath = ’’;

fileName = char(varargin(1));

end

eval(sprintf(’unzip(’’%s%s’’)’,filePath,fileName));

B.1. hde-toolbox 95

fileNa = strrep(fileName,’.hde’,’’);

eval(sprintf(’load %s’,fileNa));

delete(handles.figure1)

handles = guidata(eval(sprintf(’hgload(’’%s’’, ’’all’’)’,fileNa)));

eval(sprintf(’delete %s.mat %s.fig’, fileNa, fileNa));

clear fileNa

global BODY FOIL

BODY = Body; % Variable loaded from previous session

FOIL = Foil; % Variable loaded from previous session

clear Body Foil

function save_model_Callback(hObject, eventdata, handles,varargin)

global BODY FOIL

if isempty(varargin)

[file,DirPath] = uiputfile({’*.hde’,’HDE model’},’Save HDE model as...’);

fileName = sprintf(’%s%s’,DirPath,file);

else

fileName = char(varargin(1));

end

tempHandles = handles;

fileName = strrep(fileName,’.hde’,’’);

fileExt = ’hde’;

Body = BODY;

Foil = FOIL;

eval(sprintf(’hgsave(’’%s.fig’’, ’’all’’)’,fileName));

eval(sprintf(’save %s.mat Foil Body’,fileName));

eval(sprintf(’zip(’’%s.%s’’,{’’%s.fig’’,’’%s.mat’’})’,fileName,fileExt,fileName,fileName));

%eval(sprintf(’delete %s.mat %s.fig’,fileName,fileName));

clear Foil Body tempHandles

% writeToFeedback(hObject, eventdata, handles, textString);

function plotVertex(hObject, eventdata, handles, varargin)

global BODY;

axes(handles.AUVfigure);

oldAxis = axis;

plot(BODY.Param.x, BODY.Param.r,’b+’);

if isempty(varargin)

axis equal;

a = axis;

axis([-0.05*a(2),1.05*a(2),1.05*a(3),1.05*a(4)]);

else

axis(oldAxis);

text(’String’, ’Left click to add a vertex, right click to end this mode’,...

’position’, [(oldAxis(2)-oldAxis(1))*0.02, 0.45*(oldAxis(4)- oldAxis(3)), 0],...

’FontWeight’, ’demi’)

end

set(handles.AUVfigure, ’Visible’,’on’)

function plotShape(hObject, eventdata, handles)

global BODY;

axes(handles.AUVfigure);

plot(BODY.shape.x, BODY.shape.r,’b’,BODY.shape.x, -BODY.shape.r,’b’);

h = gcf;

axis equal;

a = axis;

axis([-0.05*a(2),1.05*a(2),1.05*a(3),1.05*a(4)]);

set(handles.AUVfigure, ’Visible’,’on’)

% Function called in order to load a figure describing the parameters of a

% torpdo shaped vehicle

96 Appendix B. MatlabSource code

function makeFigures(hObject, eventdata, handles)

global BODY FOIL

% Find the correct path for the figure to be saved

filePath = mfilename(’fullpath’);

filePath = filePath(1:length(filePath)-length(mfilename));

filePath = [filePath ’latex’ filesep ’gfx’ filesep];

%Make a figure of the body shape

h = figure(’visible’,’off’);

plot(BODY.shape.x, BODY.shape.r,’b’,BODY.shape.x, -BODY.shape.r,’b’);

if ~strcmp(lower(BODY.Profile),’torpedo’)

hold on

plot(BODY.Param.x,BODY.Param.r,’xr’);

hold off

end

axis equal;

a = axis;

axis([-0.05*a(2),1.05*a(2),1.05*a(3),1.05*a(4)]);

print(h,’-dpng’,[filePath ’bodySideView’]);

delete(h)

% Make 3d figure used on the frontpage of the report

NTHETA = 30;

NDISC = 50;

theta = 0:2*pi/NTHETA:2*pi;

X = 0:BODY.Param.Lpp/NDISC:BODY.Param.Lpp;

R = interp1(BODY.shape.x,BODY.shape.r, X);

X = ones(NTHETA+1,1)*X;

h = figure(’visible’,’off’);

surf(X, cos(theta(:))*R, sin(theta(:))*R);

hold on

plotFoil(hObject, eventdata, handles, gca, ’plotsurface’);

hold off

axis equal

set(get(h,’Children’),’visible’,’off’)

print(h,’-dpng’,[filePath ’body3d’]);

delete(h)

function plotStartFig(hObject, eventdata, handles)

axis(handles.AUVfigure);

plotOpenfig(handles.AUVfigure)

function plot3D(hObject, eventdata, handles)

global BODY

NTHETA = 30;

NDISC = 50;

theta = 0:2*pi/NTHETA:2*pi;

X = 0:BODY.Param.Lpp/NDISC:BODY.Param.Lpp;

R = interp1(BODY.shape.x,BODY.shape.r, X);

X = ones(NTHETA+1,1)*X;

axes(handles.AUVfigure); % get the correct axes

surf(X, cos(theta(:))*R, sin(theta(:))*R)

plotFoil(hObject, eventdata, handles, handles.AUVfigure, ’plotsurface’)

axis equal

set(handles.AUVfigure, ’Visible’,’off’)

function plotFoil(hObject, eventdata, handles, AKSER, varargin)

global FOIL;

axes(AKSER);

hold on

B.1. hde-toolbox 97

for i=1 : length(FOIL)

tInc = ceil(length(FOIL(i).Curve.Discrete.root.x)/10);

tLength = length(FOIL(i).Curve.Discrete.root.x);

x = [FOIL(i).Curve.Discrete.root.x(1:tInc:tLength);...

FOIL(i).Curve.Discrete.tip.x(1:tInc:tLength)];

yu = [FOIL(i).Curve.Discrete.root.y(1,(1:tInc:tLength));...

FOIL(i).Curve.Discrete.tip.y(1,(1:tInc:tLength))];

yl = [FOIL(i).Curve.Discrete.root.y(2,(1:tInc:tLength));...

FOIL(i).Curve.Discrete.tip.y(2,(1:tInc:tLength))];

z = [FOIL(i).Curve.Discrete.root.z(1:tInc:tLength);...

FOIL(i).Curve.Discrete.tip.z(1:tInc:tLength)];

if strcmp(lower(FOIL(i).Plane), ’xy’)

if isempty(varargin)

plot3(x,yu,z,’b’,x,yl,z,’b’)

else

surf(x,z,yu); surf(x,z,yl); % Positive y axis foil

surf(x,-z,yu); surf(x,-z,yl); % Negative y axis foil

end

elseif strcmp(lower(FOIL(i).Plane), ’xz’)

if isempty(varargin)

plot3(x,z,yu,’b’,x,-z,yl,’b’)

else

surf(x,yu,z); surf(x,yl,z); % Upper foil

surf(x,yu,-z); surf(x,yl,-z); % Lower foil

end

end

end

hold off

function rescaleFoil(hObject, eventdata, handles, factor)

global FOIL

for i = 1:length(FOIL)

try

Xo = FOIL(i).Xo;

Xo_new = FOIL(i).Xo*factor;

Xi_root = FOIL(i).Curve.Discrete.root.x;

Xi_tip = FOIL(i).Curve.Discrete.tip.x;

Xi_rootN = Xi_root-Xo + Xo_new;

Xi_tipN = Xi_tip - Xo + Xo_new;

FOIL(i).Xo = Xo_new;

FOIL(i).Curve.Discrete.root.x = Xi_rootN;

FOIL(i).Curve.Discrete.tip.x = Xi_tipN;

catch

error(’Something wrong in rescaleFoil function’)%

end % try

end % for

function writeToFeedback(hObject, eventdata, handles, NewTextString)

oldString = get(handles.FeedBack_Text,’String’);

NewTextString = sprintf(’*%s’,NewTextString);

set(handles.FeedBack_Text,’String’,padText(oldString, NewTextString));

pause(0.2) % Force repaint of the feedback panel

function outText = padText(oldString, NewTextString)

if length(NewTextString) > length(oldString);

NewTextString = NewTextString(1:length(oldString));

temp = [NewTextString; oldString];

outText = temp(1:size(oldString,1),:);

else

temp(1:size(NewTextString,1), 1:length(oldString)) = ’ ’;

temp(1:size(NewTextString,1),1:length(NewTextString)) = NewTextString;

98 Appendix B. MatlabSource code

temp = [temp; oldString];

outText = temp(1:size(oldString,1),:);

end

% Check if the format of the foil input is correct

function output = validFoil_Input(hObject, eventdata, handles, Foil)

global BODY;

temp = 0; % Assume incorrect input

try

Dbody = interp1(BODY.shape.x,BODY.shape.r,Foil.Xo+Foil.Cr/2);

if Foil.Cr+Foil.Xo > BODY.Param.Lpp

errMsg = ’Incorrect input, foil is mounted behind body’;

output = 0;

elseif (Foil.Cr || Foil.Ct) < 0

errMsg = ’Incorrect input, chord lengths must be a positive number’;

output = 0;

elseif Foil.Span < Dbody

errMsg = ’Incorrect input, foil span < diameter of body’;

output = 0;

else

output = 1; % Correct input

end % if

catch % There is something wrong with the foil format

errMsg = ’Foil not added’;

output = 0;

end % try

try writeToFeedback(hObject, eventdata, handles, errMsg); end

%%

%%%%%%%%%%%% end of validFoil_Input

%%

function makeReport(hObject, eventdata, handles)

global BODY FOIL

oldPath = what;

oldPath = oldPath.path; % Currently working directory

LatexPath = mfilename(’fullpath’);

LatexPath = LatexPath(1:length(LatexPath)-length(mfilename));

LatexPath = [LatexPath ’latex’];

cd(LatexPath);

fid = fopen(’report.pdf’,’w’);

if fid>0

fclose(fid);

createReport(BODY,FOIL);

[status, er] = dos(’pdflatex report’);

if status

cd(oldPath);

errMsg = ’Latex must be installed and added to the path, report not generated’;

writeToFeedback(hObject, eventdata, handles, errMsg);

else

cd(oldPath);

errMsg = ’Generating report...’;

writeToFeedback(hObject, eventdata, handles, errMsg);

cd(LatexPath);

[status, er] = dos(’bibtex report’);

if status

errMsg = er;

writeToFeedback(hObject, eventdata, handles, errMsg);

end

[status, er] = dos([’openReport.bat’]);

if status

errMsg = er;

writeToFeedback(hObject, eventdata, handles, errMsg);

end

B.1. hde-toolbox 99

cd(oldPath);

end

else

cd(oldPath);

errMsg = (’Could not write report, document already open?’);

writeToFeedback(hObject, eventdata, handles, errMsg);

end

B.1.3 addedMass.m

function Ma = addedMass(body, foil, xm, rho)

% function addedMass

%

% Output:

% Ma = addedMass(body, foil, xm, rho)

% where Ma is a 6x6 matrix with added mass coefficients according to

% SNAME(1950)

%

% Input:

% body - structure of format given by bodycalc.m

% foil - a 1xN structure of N foilsections. Each structure should

% include the following terms:

% .Cr - Chord length [m]

% .Xo - Distance from nose to leading edge of the root chord

% .Plane - Describe the plane of the foil pair (’XY’ or ’XZ’)

% .Span - foil span (tip to tip) of the foil pair

% xm - Reference point for calculations (assuming y = z = 0)

% rho - water density (kg/m^3)

%

%

% References:

% SNAME(1950) - The Society of Naval Architects and Marine Engineers, "Nomenaclature

% for Treating the Motion of a Submerged Body Through a

% Fluid", Technical and Research Bulletin No. 1-5, April 1950

%

% Fossen(2002)- Fossen, Thor I., "Marine Control Systems",

% ISBN 82-92356-00-2, Marine Cyberntetics, Trondheim- Norway

%

% Newman(1999)- Newman, J N, "Marine Hydrodynamics", ISBN 0-262-14026-8

%

% Blevins(1979)- Blevins, Robert D, "Formulas for natural frequency and mode shape", ISBN 0-89464-894-2

% Calculates the added mass for a body of revolution

% All expressions are taken from table 4.3 in

% Newman(1999)

x = body.shape.x; % Discrete points describing the surface of the body

r = body.shape.r; % Discrete points describing the surface of the body

Ma = zeros(6,6); % Declare added mass coefficients matrix

% Inline function used in calculation for A55 or A66 component

% (int(c*x^2 dx,x,a,b))

intFact = inline(’1/3*(x-xm)^3’,’x’,’xm’);

% Contribution from body

% Using trapezoidal method

for i=2:length(x)

rHat = (r(i)+r(i-1))/2;

xHat = (x(i)+x(i-1))/2;

delta = (x(i)-x(i-1)); % Width of panel

Ma(2,2) = Ma(2,2) +...

delta*pi*rho*rHat^2; % Contribution of current panel

Ma(5,3) = Ma(5,3) + ...

(xm-xHat)*... % Moment arm

100 Appendix B. MatlabSource code

delta*pi*rho*rHat^2; % Contribution of current panel

Ma(5,5) = Ma(5,5) + rho*pi*rHat^2* delta * (xm-xHat)^2 ;

% __________________/ _________/

% dm arm^2

end

Ma(1,1) = calcA11(r,max(x),rho); % Approximate body as an ellipsoid

Ma(3,3) = Ma(2,2); % A33 equals A22 for a body of revolution

Ma(6,6) = Ma(5,5); % A66 equals A55 for a body of revolution

Ma(6,2) = -Ma(5,3);

% Contribution from foil(s)

for i=1:length(foil)

% calculate added mass terms due to foil(s)

[A33_22, A53_62, A55_66,A44] = wingPanels(x,r,foil(i),xm,rho);

if foil(i).Plane == ’XY’

Ma(3,3) = Ma(3,3) + A33_22;

Ma(5,3) = Ma(5,3) - A53_62;

Ma(5,5) = Ma(5,5) + A55_66;

elseif foil(i).Plane == ’XZ’

Ma(2,2) = Ma(2,2) + A33_22;

Ma(6,2) = Ma(6,2) + A53_62;

Ma(6,6) = Ma(6,6) + A55_66;

else

error(’Plane \"%s\" is not defined’,a);

end %if

Ma(4,4) = Ma(4,4) + A44;

end % for

% Prepare output (According to Fossen (2002)) i.e Ma = Ma’

Ma = Ma + Ma’ - diag(diag(Ma));

% If the wings are tapered they should be divided into panels,

% if not, the added terms are calculated using two dimensional theory

function [Ma33_22,Ma53_62,Ma55_66,Ma44] = wingPanels(x,r,foil,xm,rho)

NDISCS = 40; % Number of discrete panels

xmin = foil.Xo; % Leading edge of the foil root chord

xmax = foil.Xo + foil.Cr;

center = (xmin + xmax)/2;

a = interp1(x,r,(xmin+xmax)/2); % Radius of body where foil is mounted

B = foil.Span/2; % foil semi-span

Cr = foil.Cr; % Root chord

Ct = foil.Ct; % Tip chord

dx = (Cr-Ct)/2; % Change in x direction

dy = B-a; % Change in Y corresponding to change dx

if dx~=0 % The foil is tapered

dydx = dy/dx;

Xtemp = 0:Cr/NDISCS:Cr/2; % Position of discrete panels

Ytemp = a + dydx*Xtemp;

[i,j]=find(Ytemp>B); % Check if components of the panels have radius > semispan

Ytemp(i,j) = B; % If so, radius of these panels = B

% Mirror panels about center axis

Bpanels = [Ytemp, Ytemp(length(Ytemp):-1:1)];

Xpanels = xmin + [Xtemp,Xtemp + Cr/2];

% Preparations for trapezoidal method

b = (Bpanels(1:length(Bpanels)-1)+Bpanels(2:length(Bpanels)))/2;

x = (Xpanels(1:length(Xpanels)-1)+Xpanels(2:length(Xpanels)))/2;

delta = (Xpanels(2:length(Xpanels))-Xpanels(1:length(Xpanels)-1));

integrationFactor = delta.*(xm-x).^2; % Numerical integration

else % The foil is not tapered

b = B;

B.1. hde-toolbox 101

delta = Cr;

x = center;

integrationFactor = 1/3*((xmax-xm)^3-(xmin-xm)^3); % Solution to int[(xm-x)^2 dx]^xmax_xmin

end

% According to Newman, table 4.3 (But removed a^2; this part is already

% calculated in body alone configuration)

Ma33_22 = sum(rho*pi*delta.*(((b.^2-a^2).^2)./b.^2)); % Contribution from foil to A33 or A22

Ma53_62 = sum(rho*pi*(xm-x).*delta.*(((b.^2-a^2).^2)/b.^2)); % Contr f.w to A53 or A62

Ma55_66 = sum(rho*pi*(((b.^2-a^2).^2)./b.^2).*integrationFactor);

% Find the A44 term for each panel of the foil

alpha = asin((2*a*b)./(a^2+b.^2));

alpha = pi-alpha; % pi/2 < alpha < pi (According to Newman, page 145)

Ma44 = sum(rho*a^4*delta.*(pi^-1 * (csc(alpha).^4).*... % Newman, page 145

(2*alpha.^2 - alpha.*sin(4*alpha) + 0.5*sin(2*alpha).^2) - pi/2));

%%%

%%%%%%%%% Function used to estimate the added mass in surge (A_11). The

%%%%%%%%% added mass is estimated assuming the bodyshape equals an ellipsoid with

%%%%%%%%% main axis a and b (a is the lengt, b is the diameter)

%%%

function A11 = calcA11(Ri,Lpp,rho)

n = 10; % Avrage the input in order to remove "noise"

Rtemp = [];

for i =1:length(Ri)/n

if i*n<=length(Ri);temp = i*n ;else temp = length(Ri); end

Rtemp = [Rtemp; mean(Ri(1+(i-1)*n: temp))];

end

D = 2*max(Rtemp);

FinenessRatio = Lpp/D;

% Data for an ellipsoid (Blevins-1979)

blevinsdata = [0.01000000000000 0.63480000000000

0.10000000000000 0.61480000000000

0.20000000000000 0.60160000000000

0.40000000000000 0.57120000000000

0.60000000000000 0.54470000000000

0.80000000000000 0.52110000000000

1.00000000000000 0.50000000000000

1.50000000000000 0.45570000000000

2.00000000000000 0.42000000000000

2.50000000000000 0.39080000000000

3.00000000000000 0.36600000000000

5.00000000000000 0.29560000000000

7.00000000000000 0.25100000000000

10.00000000000000 0.20710000000000];

muInterp = interp1(blevinsdata(:,1),blevinsdata(:,2), FinenessRatio); % Interpolate ellipsoid

% Added mass for an ellipsoid (Blevins-1979).

A11 = muInterp*4/3*pi*rho*(D/2)^3;

B.1.4 bodyAlone.m

function BodyOut = bodyalone(body, Xm)

% References:

% Blakelock, John H (1991), "Automatic control of aircrafts and missiles"

% [Book]

% Bohlmann, Hans Jurgen (1990), "Berechnung hydrodynamischer Koeffizienten von

% Ubooten zur Vorhersage des Bewegungsverhaltens". PhD-thesis

102 Appendix B. MatlabSource code

% Universitat Hamburg

% Datcom, (1978), "USAF Stability and Control Datcom", :Authors: Hoak, D E AND Finck, R D

% Hoerner, Sighart F (1985), "Fluid dynamic lift" [Book]

% Myring, D. F (1975), "A theoretical study of body drag in subcritical

% axisymmetric flow", Journal of Aeronautical Quarterly

% Pitts, William C & Nielsen, Jack N & Kaattari, George E (1957),"Lift and

% center of pressure of foil-body-tail combinations at subsonic, transonic,

% and supersonic speeds". NACA tecnical report 1307

% Roskam, Jan (1979), "Airplane flight dynamics and automatic flight

% controls, Part1" [Book]

Lpp = body.Param.Lpp;

Body = body;

% Lift and moment curve for body

Xo = body.SeparationPoint;

So = pi*interp1(body.shape.x,body.shape.r,Xo)^2;

dx = Xo/1000;

Xi = 0:dx:Xo;

Vo = pi*sum(dx*interp1(body.shape.x,body.shape.r,Xi).^2);

f = Lpp/body.Param.d; % Body fineness ratio

k2_k1 = K2_K1(f); % Function call, Apparent mass factor

Body.derivatives.f_Info = ’Body fineness ratio (Lpp/d)’;

Body.derivatives.f = f;

Body.derivatives.k2_k1_Info = ’Apparent mass factor’;

Body.derivatives.k2_k1 = k2_k1;

%%

%%%%%%%% Body alone derivatives

%%

%%

%%

%%%%%%%% Lift curve slope

%%

Body.derivatives.ClaInfo = ’Lift curve slope (Based on Lpp^2)’;

Body.derivatives.Cla = 2*k2_k1*So/Lpp^2; % Cla based on Lpp^2

%%

%%%%%%%% Body pitching moment

%%%%%%%% The procedure below is derived in Håvard Bø’s Msc thesis

%%

Cla = Body.derivatives.Cla;

% Cma based on Lpp^3

Cma = Xm*Cla/Lpp+2*k2_k1/Lpp^3 *(Vo- Xo*So);

Body.derivatives.CmaInfo = ’Pitching moment, body alone, rel to Xm (Based on Lpp^3)’;

Body.derivatives.Cma = Cma;

%%

%%

%%%%%%%% Hydrodynamic center, body alone

%%

Xhat_hc = Cma/Cla; % Hydrodynamic center of body, relative to XM (Based on Lpp)

Xhc = Xhat_hc*Lpp; % Hydrodynamic center of body, relative to XM

Body.Sim.Info = ’Hydrodynamic center of body (Rel to Xm- Used in simulation)’;

Body.Sim.pos = [Xhc,0,0]’;

Body.derivatives.Xhat_hc_Info = ’Hydrodynamic Center relative to Xm (based on Lpp)’;

Body.derivatives.Xhat_hc = Xhat_hc;

Body.derivatives.XhcInfo = ’Hydrodynamic center, relative to Xm (m)’;

Body.derivatives.Xhc = Xhc;

clear Xhat_hc Xhc

%%

%%

%%%%%%%% Calculate the Damping derivative CD_so according to Datcom

B.1. hde-toolbox 103

%%%%%%%% CD_so = CD_marked + CD_base(CD_marked)

%%

Rn = Lpp*body.Data.velocity/body.Data.KinViscousity; % Reynolds number

%%%

Body.Data.Rn = Rn;

Rn(find(Rn<300)) = 300;

Rn(find(Rn>1e12)) = 1e12;

% ITTC mean line

Cf = (0.075)./(log10(Rn)-2).^2;

Db = 2*body.shape.r(length(body.shape.r)-1); % Base diameter

if Db< 1e-3; Db = 0; end

Body.Sim.Db = Db;

clear Db

% syms cf

% Schoenherr, flat plate friction drag

% Cf = str2double(char(solve([’0.242/sqrt(Cf) = log10(’,num2str(Rn),’*Cf)’])));

Body.Sim.cdDIVcf = (1+60*(body.Param.d/body.Param.Lpp)^3 + ...

0.0025*body.Param.Lpp/body.Param.d)*...

body.WA/(pi*body.Param.d^2/4);

CDfb = Cf * Body.Sim.cdDIVcf;

Body.Sim.dbDIVd = Body.Sim.Db / body.Param.d;

Body.Sim.dragNormal = (pi*body.Param.d^2/4)/body.Param.Lpp^2;

CDbase = calcCDbase(CDfb, Body.Sim.Db, body.Param.d);

CD_so = CDfb + CDbase;

Cd = CD_so*(pi*body.Param.d^2/4)/body.Param.Lpp^2; % Cd based on Lpp^2

Body.derivatives.Cd_Info = ’Cd (according to Datcom, based on Lpp^2)’;

Body.derivatives.Cd = Cd;

Body.derivatives.CDbaseInfo = ’Base drag (based on frontal area)’;

Body.derivatives.CDbase = CDbase;

Body.derivatives.CDfbInfo = ’Zero lift drag (based on frontal area)’;

Body.derivatives.CDfb = CDfb;

clear CDbase CDfb CD_so Cd Cf % Clear temporary variables

%%

%%

%%%%%%%% Calculate the "pitching-damping derivative",

%%%%%%%% (Hoak & Finch 1978, Sec 7.2.1.2)

%%

Sb = pi*Body.Sim.Db^2; % Base area (area of the stern)

CmqNum = (1-Xm/Lpp)^2*Sb - body.Volume/Lpp*...

((body.Xc- Xm)/Lpp);

CmqDen = (1-Xm/Lpp)*Sb - body.Volume/Lpp;

Cmq = 2*Cma* CmqNum/CmqDen;

Body.derivatives.Cmq_Info = ’Based on Lpp^4’;

Body.derivatives.Cmq = Cmq;

clear CmqNum CmqDen Sb % Clear temporary variables

%%

%%

%%%%%%%% Calculate Clq,

%%%%%%%% source: Datcom (1978)

%%

Body.derivatives.ClqInfo = ’Clq, body alone (Based on Lpp^3)’;

Body.derivatives.Clq = 2*Body.derivatives.Cla* ...

(1-Body.derivatives.Xhat_hc)*...

104 Appendix B. MatlabSource code

(pi/4*Body.Sim.Db^2)/Lpp^2;

clear f k2_k1 Cmq Cma Cla Xhc Xhc% Clear temporary variables

BodyOut = Body;

%%

% Function used to calculate the apparent mass factor

% input ’f’ - finenessratio

%%

function out = K2_K1(f)

x = [4 6 8 10 12 14 16 18 20];

K = [0.78 0.86 0.91 0.94 0.952 0.963 0.97 0.975 0.98];

out = interp1(x,K,f);

%%

% Function used to calculate the base drag coefficient

% Source: Datcom

%%

function CDbase = calcCDbase(CD_marked, dBase, dmax);

CDbase = 0.029*((dBase/dmax)^3)/CD_marked;

B.1.5 bodyCalc.m

function Body = bodyCalc(BodyInput)

% References:

% Roskam, Jan (1979), "Airplane flight dynamics and automatic flight

% controls, Part1" [Book]

% Blakelock, John H (1991), "Automatic control of aircrafts and missiles"

% [Book]

% Hoerner, Sighart F (1985), "Fluid dynamic lift" [Book]

% Myring, D. F (1976), "A theoretical study of body drag in subcritical

% axisymmetric flow", Journal of Aeronautical Quarterly

% Pitts, William C & Nielsen, Jack N & Kaattari, George E (1957),"Lift and

% center of pressure of wing-body-tail combinations at subsonic, transonic,

% and supersonic speeds". NACA tecnical report 1307

NDISC = 3000; % Number of discrete sections used in forthcoming calculations

availablePro = ’’;

availablePro = sprintf(’%s %s\n’,availablePro,’vertex’);

availablePro = sprintf(’%s %s\n’,availablePro,’torpedo’);

% **

% Chech for valid inputs and Call the correct procedure for construction of

% the body shape

try

Body = BodyInput;

temp = feval(sprintf(’%s’,BodyInput.Profile), BodyInput.Param, NDISC);

Body.shape = temp.shape;

Body.Param.d = 2*max(Body.shape.r);

try Body.Curve = temp.Curve;end % If the body is torpedo shaped

catch

temp = sprintf(’Procedure %s is not recognized as a valid function, \n’, BodyInput.Profile);

temp = sprintf(’%s- or incorrect parameter input.\n’,temp);

temp = sprintf(’%sAvailable procedures are:\n’,temp);

error(sprintf(’%s%s%s’,temp,availablePro,lasterr));

end

% **

%%%

%%%

B.1. hde-toolbox 105

% Function used for approximation of a body described by a finite number of

% vertexes. The body is discretizised with the help of Cubic Hermite

% interpolation (pchip(x,y,xx); built in fnction in MatLab)

%

% Output: structure = vertex(Param, NDISC)

% where the structure is a STRUCTURE contating the following fields:

% x: 1xNDISC vector of discrete x positions

% y: 1xNDISC vector, radius: r(x)

%

% Input:

% Param. (A structure containing x, y, Lpp)

% x: A vector (1xN) of the position of the x position of the

% N points

% r: A vector (1xN) of the radius corresponding to the x

% position of the points

% Lpp: Length between perpendicular (Length of vehicle) [m]

%

% NDISC: Number of discrete panels

function outParam = vertex(Param, NDISC)

x = Param.x; % x position of points

r = Param.r; % r(x)

Xi = 0:Param.Lpp/NDISC:Param.Lpp;

Ri = pchip(x ,r , Xi); % Cubic Hermite interpolation of body surface

shape.Info = sprintf(’r(x) for the discrete body, \n(Interpreted with help of Cubic Hermite)’);

shape.x = Xi; % xpos of discrete points

shape.r = Ri; % Radius of discrete points

outParam.shape = shape;

%%%

% End of vertex function

%%%

%%%

%%%

% Function used for calculation of the shape of a torpedo vehicle

% Nose and tail sections are computed according to the polynomals given in

% Myring (1976).

%

% Output: structure = torpedo(Param, NDISC)

% where structure is a (1x3) dimensional STRUCTURE each contating

% the following fields:

% Curve: Inline function Curve(x), returns the radius of

% the section at a given point

% min: Start of the section (relative to nose origin)

% max: End of the section (relative to nose origin)

%

% Input:

% Param.

% a: Length of nose section [m]

% b: Distance from nose to beginning of tail section [m]

% d: Diameter of the cylindrical section [m]

% n: Parameter which determines the shape of the nose

% theta: Half of the included angle at the tip of the tail [deg]

% Lpp: Length between perpendicular (Length of vehicle) [m]

% Lpoint: Length of vehicle if tail should end in a point (Lpoint>=Lpp)

%

% NDISC: Number of discrete panels

function out = torpedo(Param, NDISC)

a = Param.a; b = Param.b;

D = Param.d; n = Param.n;

theta = Param.theta;

106 Appendix B. MatlabSource code

Lpp = Param.Lpp; Lpoint = Param.Lpoint;

syms x;

% Check for valid input

if theta<0;

error(sprintf(’Incorrect input, theta should be a positive number (theta = %1.3f)’, theta)); end

if Lpp>Lpoint; error(’Lpp > Lpoint (Incorrect description of torpedo shaped vehicle)’); end

if a>b; error(’a>b (Tail starts before nose ends)’); end

if n>3; warning(sprintf(’Parameter, n=%2.2f, for determination of nose shape is large’,n)); end

theta = theta*pi/180;

% Start description of nose section

nose.Info = ’Nose section’;

nose.Curve = inline(char(1/2*D*(1-(x-a)^2/a^2)^(1/n)));

nose.min = 0; % Start of nose section

nose.max = a; % End of nose section

% Start description of cylindrical section

mid.Info = ’Cylindrical section’;

mid.Curve = inline(sprintf(’%2.4f’,1/2*D),’x’);

mid.min = a; % Start of cylindrical section

mid.max = b; % End of cylindrical section

% Start description of tail section

tail.Info = ’Tail section’;

tail.Curve = 1/2*D-(3/2*D/(Lpoint-b)^2-tan(theta)/(Lpoint-b))*...

(x-b)^2+(D/(Lpoint-b)^3-tan(theta)/(Lpoint-b)^2)*(x-b)^3;

tail.Curve = inline(char(tail.Curve));

tail.min = b; % Start of tail section

tail.max = Lpp; % End of tail section

% Prepare return value (Insert the sections into an array of

% structures)

Curve(1) = nose;

Curve(2) = mid;

Curve(3) = tail;

minMax = [Curve.min;Curve.max]; % Min and max for the curves

Rpos = [];

numberOfPoints = NDISC; % Number of points

Xpos = 0:max(minMax(2,:))/numberOfPoints:max(minMax(2,:))-max(minMax(2,:))/numberOfPoints;

% Discretisize the body into NDISC panels

for i = 1:length(Xpos)

% Find the curve belonging to current x position

ActiveCurve = find((minMax(1,:)<=Xpos(i)) & (minMax(2,:)>=Xpos(i)));

x = Xpos(i);

% Find radius at the current position

Rpos = [Rpos, real(Curve(ActiveCurve(1)).Curve(Xpos(i)))];

end

Xpos = [Xpos, Lpp]; % Close body

Rpos = [Rpos, 0];

out.Curve = Curve;

out.shape.Info = ’r(x) for the discrete body’;

out.shape.x = Xpos;

out.shape.r = Rpos;

%%%

% End of torpedo function

%%%

B.1.6 calcVolumSurface.m
function out = calcVolumSurface(Body)

% Procedure for calculating volume, wetted surface, momentum and center of

% damping for a body of revolution

B.1. hde-toolbox 107

%

% out = calcVolumSurface(Body)

%

% Input:

% Body: a structure of type body (output from bodyCalc.m)

% Output: a structure containing following fields

% out.Volume - Volume of the body

% out.WA - Wetted area of the body

% out.Sx - Volume momentum

% out.CenterOfDamping - Center of damping

% out.SeparationPoint - the point where separation is likely to

% occour

x = Body.shape.x;

r = Body.shape.r;

% Prepare for trapezoidal method

Xi = (x(1:length(x)-1)+x(2:length(x)))/2;

Ri = (r(1:length(r)-1)+r(2:length(r)))/2;

delta = (x(2:length(x))-x(1:length(x)-1)); % Find width of slice (panel)

% out = Body;

% Find the separtation point for the body.

switch lower(Body.Profile)

case ’torpedo’

if Body.Data.AutoSep; sepPoint = Body.Param.a; % Seperation point of torpedo

else sepPoint = Body.Data.sepPoint; end

% Calculate nose section

a = Body.Param.a;

b = Body.Param.b;

nose = find(Xi<=a);

mid = find(Xi(find(Xi<=b))>a);

tail = find(Xi>b);

% Volume of the various sections

Vol.info = ’Volume of nose section’;

Vol.val = volume(Ri(nose), delta(nose));

Vol(2).info = ’Volume of cylindrical section’;

Vol(2).val = volume(Ri(mid), delta(mid));

Vol(3).info = ’Volume of tail section’;

Vol(3).val = volume(Ri(tail), delta(tail));

% Wetted area of the various sections

WA.info = ’Wetted Area, nose section’;

WA.val = wettedArea(Ri(nose), delta(nose));

WA(2).info = ’Wetted Area, cylindrical section’;

WA(2).val = wettedArea(Ri(mid), delta(mid));

WA(3).info = ’Wetted Area, tail section’;

WA(3).val = wettedArea(Ri(tail), delta(tail));

% SX for the various sections

Sx.info = ’Sx, nose section’;

Sx.val = momentSx(Ri(nose), delta(nose), Xi(nose));

Sx(2).info = ’Sx, cylindrical section’;

Sx(2).val = momentSx(Ri(mid), delta(mid), Xi(mid));

Sx(3).info = ’Sx, tail section’;

Sx(3).val = momentSx(Ri(tail), delta(tail), Xi(tail));

clear nose mid tail a b % Clear temporary variables

% Prepare output;

out.Sections.Volume = Vol;

out.Sections.WA = WA;

out.Sections.Sx = Sx;

case ’vertex’

if Body.Data.AutoSep

% The separation point is on the most negative curve slope

% for a stremlined body of revolution

108 Appendix B. MatlabSource code

n = 10; % Avrage the input in order to remove "noise"

Rtemp = [];

Xtemp = [];

for i =1:length(Ri)/n

if i*n<=length(x);temp = i*n ;else temp = length(x); end

Rtemp = [Rtemp; mean(Ri(1+(i-1)*n: temp))];

Xtemp = [Xtemp; mean(Xi(1+(i-1)*n: temp))];

end

[aTemp, bTemp] = min(diff(Rtemp));

sepPoint = Xtemp(bTemp); % Most negative slope

else

sepPoint = Body.Data.sepPoint;

end % if autocalculate separation point

otherwise

error(sprintf(’Profile %s is not reckognized as a valid input’,Body.Profile));

end % if

clear aTemp bTemp Rtemp Xtemp n

% Prepare output structure

outTemp = Body;

outTemp.SeparationPoint = sepPoint;

outTemp.Volume = volume(Ri,delta);

outTemp.WA = wettedArea(Ri,delta);

outTemp.Sx = momentSx(Ri,delta,Xi);

outTemp.Xc_Info = ’Centre of buoyancy’;

outTemp.Xc = outTemp.Sx/outTemp.Volume;

out = outTemp;

%%

%%%%%%%%%%% Functions

%%%

% Calculate the volume

function Vol = volume(r,dx)

Vol = sum(pi*(r.^2).*dx);

% Calculate the wetted area

function Wa = wettedArea(r,dx)

Wa = sum(2*pi*r.*dx);

% Calculate the momentum contribution

function Sx = momentSx(r,dx,x)

Sx = sum(pi*(r.^2).*x.*dx);

B.1.7 convert2sname.m

function out = convert2sname(Ma,Mrb,derivatives, L, Rho)

% out = convert2sname(Ma, Mrb, Der, L, Rho)

%

% calculate the nondimensional static and dynamic parameters for a body

%

% input:

% Ma - 6x6 added mass matrix (dimensional)

% Mrb - 6x6 rigid body system inertia matrix

% Der - Structure of derivatives (format given by dynDerivatives.m)

% L - Characteristic length, used to nondimenionalize Mrb & Ma

% Rho - Water density (kg/m^3)

%

% output:

% out - Structure of nondimensional parameters for Ma, Mrb, and D

% Check for correct input

if L <= 0

error(sprintf(’L=%1.2f < 0 \n=> Characteristic length must be a positive number’,L));

B.1. hde-toolbox 109

elseif min(size(Mrb) ~= [6 6])

error(’Incorrect size of Mrb, should be a 6x6 matrix’);

elseif min(size(Ma) ~= [6 6])

error(’Incorrect size of Ma, should be a 6x6 matrix’);

elseif Rho<=0

error(’Density, Rho, should be a poitive number’);

end

out.Ma = massConvertion(Ma, L, Rho);

out.Mrb = massConvertion(Mrb, L, Rho);

D = zeros(6,6);

bodyDer = derivatives.Body;

for i = 1:length(derivatives.Wing) % For all wings

wingDer = derivatives.Wing(i);

wingBodyDer = derivatives.WingBody(i);

if lower(wingDer.Plane) == ’xy’

D = D + convertDerivativesXY(bodyDer, wingDer, wingBodyDer, out.Ma);

elseif lower(wingDer.Plane) == ’xz’

D = D + convertDerivativesXZ(bodyDer, wingDer, wingBodyDer, out.Ma);

else error(’Unknown orientation of wing section’);

end %if

end % for

out.D = D;

%%%

%%%%%%%%%%%% Local functions

%%%

function nonDim = massConvertion(M,L, Rho)

nonDim = zeros(6,6); % Initialize matrix

for i = 1:6

for j = 1:6

if max(i==[1 2 3]) && max(j==[1 2 3])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^3);

elseif max(i==[1 2 3]) && max(j==[4 5 6])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^4);

elseif max(i==[4 5 6]) && max(j==[1 2 3])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^4);

elseif max(i==[4 5 6]) && max(j==[4 5 6])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^5);

else error(’Something is wrong’);

end % if

end %for

end % for

%%

%%%%%%% end of massConvertion

%%

function D = convertDerivativesXY(body, wing, wingBody, Ma);

temp = zeros(6,6);

temp(3,3) = - (body.Cd + wingBody.Cla);

temp(3,5) = - (wingBody.Clq + Ma(1,1));

temp(5,3) = wingBody.Cma;

temp(5,5) = wingBody.Cmq;

D = temp;

function D = convertDerivativesXZ(body, wing, wingBody, Ma);

temp = zeros(6,6);

temp(2,2) = - (body.Cd + wingBody.Cla);

temp(2,6) = - (wingBody.Clq + Ma(1,1));

temp(6,6) = wingBody.Cmq;

110 Appendix B. MatlabSource code

D = temp;

B.1.8 dampingTerms.m

function [dampDim, varargout] = dampingTerms(Body,Wing)

derivatives = Body.Der;

rho = Body.Param.Rho;

Lpp = Body.Param.Lpp;

bodyDer = derivatives.Body;

D = zeros(6,6);

D(1,1) = -bodyDer.Cd;

D(2,2) = -bodyDer.Cd;

D(3,3) = -bodyDer.Cd;

for i = 1:length(derivatives.Wing) % For all wings

wingDer = derivatives.Wing(i);

wingBodyDer = derivatives.WingBody(i);

D(1,1) = D(1,1) - derivatives.Wing(i).C_D;

switch lower(wingDer.Plane)

case ’xy’

D = D + convertDerivativesXY(bodyDer, wingDer, wingBodyDer);

case ’xz’

D = D + convertDerivativesXZ(bodyDer, wingDer, wingBodyDer);

otherwise

error(’Unknown orientation of wing section’);

end %switch

D(4,4) = rollDamping(Body,Body.Der.WingBody(i),Wing(i));

end % for

% Non dimensional formulation, (optionally output)

varargout{1} = -D; % Convert from SNAME to Fossen

% Dimensional formulation, (standard output)

basedOn = diag([2 2 2 3 3 3]);

basedOn(1,2:6) = 3;

basedOn(2,[1,3:6]) = 3;

basedOn(3,[1:2,4:6]) = 3;

basedOn(4,[1:3,5:6]) = 4;

basedOn(5,[1:4,6]) = 4;

basedOn(6,[1:5]) = 4;

Lpp = Lpp*ones(6,6);

dampDim = -0.5*rho*D.*(Lpp.^basedOn);

% Make the damping Matrix Dimensional

% Functions ued to form the damping matrix

function D = convertDerivativesXY(body, wing, wingBody);

temp = zeros(6,6);

temp(3,3) = - wingBody.Cla; % See Blackelock Eq 1-82

temp(3,5) = - (wingBody.Clq);

temp(5,3) = wingBody.Cma;

temp(5,5) = wingBody.Cmq;

D = temp;

function D = convertDerivativesXZ(body, wing, wingBody);

temp = zeros(6,6);

temp(2,2) = - wingBody.Cla; % See Blackelock Eq 1-82

temp(2,6) = - (wingBody.Clq);

temp(6,2) = wingBody.Cma;

temp(6,6) = wingBody.Cmq;

B.1. hde-toolbox 111

D = temp;

function Dpp = rollDamping(Body,WingBody,Wing)

Yr = mean(Wing.Curve.Discrete.root.z);

Yt = mean(Wing.Curve.Discrete.tip.z);

Ndisc = 100;

dY = (Yt-Yr)/Ndisc;

dXdY = (Wing.Ct-Wing.Cr)/(Yt-Yr); %

syms y;

CofY = inline(char(Wing.Cr + dXdY*(y-Wing.Cr)));

Yi = Yr:dY:Yt;

Ci = CofY(Yi);

% Solve the integral numerically

dCldA = WingBody.ClaWB*Wing.extendedWing.S/Wing.exposedWing.S;

Dpp = -sum(2*dCldA*Yi.*Ci.*dY);

Dpp = Dpp/Body.Param.Lpp^3; % Nondimensionalize with respect to Lpp

B.1.9 editRigidBody.m

function Mrb = editRigidBody(Min, varargin)

% Created by Håvard Bø 28-Apr-2004

try

figpos = varargin{1};

catch

figpos = [10 10];

end

arr_size = size(Min);

bd_size = 1; %border size

rLENGTH = 10; % Length of each element

rHEIGHT = 1.3; % Height of each element

buttonHeight = 2; buttonLength = 15; ButtonSpace = 2; buttonYpos = 1;

fig_dim(1) = (arr_size(2))*(rLENGTH+bd_size) +bd_size;

fig_dim(2) = (arr_size(1)+1)*(rHEIGHT + bd_size) + buttonHeight;

%fig_dim = [(arr_size(1))*(rLENGTH+bd_size) +bd_size, (arr_size(2) +1)*rHEIGHT + buttonHeight];

midFig = fig_dim(1)/2;

% Define where the placement of the buttons

okButtonPos = [midFig-buttonLength-ButtonSpace/2, buttonYpos, buttonLength, buttonHeight];

CaButtonPos = [midFig+ButtonSpace/2, buttonYpos, buttonLength, buttonHeight];

arr_fig = figure(’unit’,’characters’,’NumberTitle’,’off’,’Menubar’,’none’,’resize’,’on’,’position’,...

[figpos(1), figpos(2), fig_dim(1), fig_dim(2)]);

ok_but = uicontrol(’Style’,’pushbutton’,’unit’,’characters’,’String’,’OK’,’position’,okButtonPos,...

’callback’,’uiresume’,’tag’,’ok’);

cancel_but = uicontrol(’Style’,’pushbutton’,’unit’,’characters’,’String’,’Cancel’,’position’,CaButtonPos,...

’callback’,’uiresume’,’tag’,’cancel’);

set(arr_fig, ’Name’, ’Rigid Body’)

posxb = bd_size;

posy = fig_dim(2)-2*bd_size;

% Create table

for i = 1:arr_size(1)

posx = bd_size;

for j = 1:arr_size(2)

a(i,j)=uicontrol(’Style’,’edit’,’unit’,’characters’,’position’, [posx, posy, rLENGTH, rHEIGHT]);

set(a(i,j),’string’, sprintf(’%2.3f’,Min(i,j)));

if ispc; set(a(i,j),’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’)); end

posx = posx + bd_size + rLENGTH;

end

posy = posy-rHEIGHT-bd_size;

end

112 Appendix B. MatlabSource code

uiwait;

but = gco;

Mrb = zeros(size(Min));

if strcmp(lower(get(but,’tag’)),’ok’)

Mrb(:) = str2double(get(a,’string’));

close;

elseif strcmp(lower(get(but,’tag’)),’cancel’)

Mrb = Min;

close;

else

Mrb = Min;

end

B.1.10 editVertexes.m

function x = editvertexes(xy, varargin);

% Created by Håvard Bø 28-Apr-2004

%function x = editvertexes(r,c);

% X = editvertexes(xy) is used for interactive editing of vertexes

% (can be used in GUI applications in the same manner as the array editor from command line)

%

% xy is an array of [x;y] positions of the vertexes

try

figpos = varargin{1};

catch

figpos = [10 10];

end

arr_size = size(xy);

bd_size = 1; %border size

rLENGTH = 10; % Length of each element

rHEIGHT = 1.3; % Height of each element

buttonHeight = 2; buttonLength = 15; ButtonSpace = 2; buttonYpos = 1;

arr_size = [2,length(xy)];

fig_dim(1) = (arr_size(2)+1)*(rLENGTH+bd_size) +bd_size;

fig_dim(2) = (arr_size(1)+1)*(rHEIGHT + bd_size) + buttonHeight;

midFig = fig_dim(1)/2;

% Define where the placement of the buttons

okButtonPos = [midFig-buttonLength-ButtonSpace/2, buttonYpos, buttonLength, buttonHeight];

CaButtonPos = [midFig+ButtonSpace/2, buttonYpos, buttonLength, buttonHeight];

arr_fig = figure(’unit’,’characters’,’NumberTitle’,’off’,’Menubar’,’none’,’resize’,’on’,’position’,...

[figpos(1), figpos(2), fig_dim(1), fig_dim(2)]);

ok_but = uicontrol(’Style’,’pushbutton’,’unit’,’characters’,’String’,’OK’,’position’,okButtonPos,...

’callback’,’uiresume’,’tag’,’ok’);

cancel_but = uicontrol(’Style’,’pushbutton’,’unit’,’characters’,’String’,’Cancel’,’position’,CaButtonPos,...

’callback’,’uiresume’,’tag’,’cancel’);

set(arr_fig, ’Name’, ’Edit Vertexes, [0;0] elements will be removed’)

posxb = bd_size;

posy = fig_dim(2)-2*bd_size;

% Create tables

for i = 1:arr_size(1)

posx = bd_size;

a(i,1)=uicontrol(’Style’,’text’,’unit’,’characters’,’position’, [posx posy rLENGTH rHEIGHT],...

’horizontalalignment’, ’right’);

for j = 2:arr_size(2)+1

posx = posx + bd_size + rLENGTH;

B.1. hde-toolbox 113

a(i,j)=uicontrol(’Style’,’edit’,’unit’,’characters’,’position’, [posx posy rLENGTH rHEIGHT]);

set(a(i,j),’string’, sprintf(’%1.3f’,xy(i,j-1)));

if ispc; set(a(i,j),’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’)); end

end

posy = posy-rHEIGHT-bd_size;

end

set(a(1,1),’string’,’x’);

set(a(2,1),’string’,’r(x)’);

uiwait;

but = gco;

if strcmp(lower(get(but,’tag’)),’ok’)

[r,c] = size(a);

if max(size(a)==[0 0]);

x = [];

else

for i = 1:r

for j = 2:c; x(i,j-1) = str2double(get(a(i,j),’string’));

end % for

end % for

close;

end % if

elseif strcmp(lower(get(but,’tag’)),’cancel’)

x = [];

close;

else

x = [];

end

B.1.11 foilalone.m
function FoilOut = foilalone(Foil, Xm, Body)

if length(Foil)<1

error(’Incorrect foil Input’)

end

for i = 1:length(Foil)

FoilOut(i) = calcFoils(Foil(i), Xm, Body);

end

function FoilOut = calcFoils(Foil, Xm, Body)

Lpp = Body.Param.Lpp;

dx = 0.01; x = 0:dx:1;

%%%

% Calculation of C_{L_alpha} using Whicker & Doenhoff (1958)

Foil.ClaInfo = ’Lift curve slope, Cla (Based on Lpp^2)’;

eta = 0.9; % Correction factor

Foil.Cla = Foil.S/Lpp^2* ...

2*pi*Foil.AR/...

(2 + 1/eta * sqrt((Foil.AR/cos(Foil.Sweep.C4))^2 + 4*cos(Foil.Sweep.C4)^2));

clear eta;

%%%

%%%

% Calculate Drag coefficients according to Datcom(1978)

%%%

Foil.CdoInfo1 =’Parasite drag coeff, C_D, (Based on Lpp^2)’;

Ytemp = Foil.Curve.upper(x);

TdivC = mean(Ytemp); % Average thickness ratio

[temp, Cxmax] = max(Ytemp); % Find the chordwise position of maximum thickness

Cxmax = x(Cxmax);

theta = cos(sweepAngle(Cxmax, 0, Foil.AR, Foil.lambda));

114 Appendix B. MatlabSource code

Rls = -0.993*theta^2 + 2.004*theta + 0.061; % See Bø, H Msc- Thesis

if Cxmax<0.3; L = 2;

else L = 1.2; end

Chat = (Foil.Cr + Foil.Ct)/2; % Mean hydrodynamic chord

Rn = Foil.Cmac*Body.Data.velocity/Body.Data.KinViscousity; % Reynolds number

Foil.Rn = Rn;

% Schoenherr, flat plate friction drag (Not used. underpredict)

% Cf = str2double(char(solve([’0.242/sqrt(Cf) = log10(’,num2str(Rn),’*Cf)’])));

%%%

% ITTC mean line

Rn(find(Rn<300)) = 300;

Rn(find(Rn>1e12)) = 1e12;

% ITTC mean line

Cf = (0.075)./(log10(Rn)-2).^2;

Foil.Sim.cdDIVcf = (1 + L*TdivC + 100*TdivC^4)*Rls*...

Foil.Swf/Lpp^2;

Foil.Cdo = Cf*Foil.Sim.cdDIVcf;

clear dx x Rls theta temp Cxmax TdivC Y Cxmax Ytemp L ;% Clear temporary variables

%%%

%%%

% Calculate Clq (dynamic derivative)

%%%

Foil.ClqInfo =’Clq, Dynamic derivative (Based on Lpp^3)’;

Chat = 2/3*Foil.Cr*...

(1+Foil.lambda+Foil.lambda^2)/(1+Foil.lambda);

Foil.Clq = 1/Lpp*...

(Chat/2 + 2*(Foil.hc - Xm))*Foil.Cla;

%%%

%%%

% Calculate Cmq (dynamic derivative). Source: Datcom (1978)

%%%

Foil.CmqInfo =’Cmq, Dynamic derivative (Based on Lpp^3)’;

xc = (Foil.hc-Xm)/Chat;

Upsilon = Foil.AR * (0.5*xc + 2*xc^2)/(Foil.AR + 2*cos(Foil.Sweep.C4)) + 1/24*...

(Foil.AR^3)*tan(Foil.Sweep.C4)^2/(Foil.AR + 6*cos(Foil.Sweep.C4)) + 1/8;

Foil.Cmq = -0.7*Foil.cla2d*...

Foil.S*Chat^2/Lpp^4*...

Upsilon * cos(Foil.Sweep.C4);

clear Chat xc;% Clear temporary variables

%%%

%%%

% Insert the posistions of the 2 foils hydrodynamic center (used in

% Simulation)

%%%

if strcmp(lower(Foil.Plane), ’xy’)

yi = Foil.Ymac;

zi = 0;

elseif strcmp(lower(Foil.Plane), ’xz’)

yi = 0;

zi = Foil.Ymac;

else

error([’Plane is not defined: ’, Foil.Plane]);

end

Foil.Sim.Info = ’Hydrodynamic center of foilpanel (Used in simulation)’;

Foil.Sim.pos = [Xm-Foil.hc,yi,zi]’;

Foil.Sim.neg = [Xm-Foil.hc,-yi,-zi]’;

%%%

B.1. hde-toolbox 115

FoilOut = Foil;

function SAn = sweepAngle(n, LAMBDA, AR, lambda)

m = 0.5;

SAn = atan(tan(LAMBDA) - 4*(n-m)/AR*(1-lambda)/(1+lambda));

B.1.12 foilBodyComb.m

function [FoilBody, Totaldrag] = foilBodyComb(foil,body,Xm)

% Todo: Check for Cmq and Clq wheter to use Cp or Xm

% check sign of Cldelta and Cmdelta

%

%%

%%%%%%%% Calculate dynamic derivatives for the foil, body combination

%%

% function out = dynDerivatives(foil,body,Xm)

%

% Input:

% foil - Structure of foil input (format given by foilalone.m)

% body - Structure of body parameters (format given by bodyalone.m)

% Xm - Reference of calculation (assuming y=z=0)

% Output:

% Structure of dynamic derivatives

%

% References:

% Blakelock, John H (1991), "Automatic control of aircrafts and missiles"

% [Book]

% Bohlmann, Hans Jurgen (1990), "Berechnung hydrodynamischer Koeffizienten von

% Ubooten zur Vorhersage des Bewegungsverhaltens". PhD-thesis

% Universitat Hamburg

% Hoerner, Sighart F (1985), "Fluid dynamic lift" [Book]

% Myring, D. F (1975), "A theoretical study of body drag in subcritical

% axisymmetric flow", Journal of Aeronautical Quarterly

% Pitts, William C & Nielsen, Jack N & Kaattari, George E (1957),"Lift and

% center of pressure of foil-body-tail combinations at subsonic, transonic,

% and supersonic speeds". NACA tecnical report 1307

% Roskam, Jan (1979), "Airplane flight dynamics and automatic flight

% controls, Part1" [Book]

RFB = 1.05; % Foil body interference correlation factor. (Interpolated data, (Datcom, Figure 4.3.3.1-37))

Totaldrag = (body.derivatives.CDfb*RFB + body.derivatives.CDbase)*...

pi*body.Param.d^2/(4*body.Param.Lpp^2); % From frontal area => Lpp^2

if length(foil) ==0;

FoilBody = [];

return

end

for i = 1:length(foil)

% Radius of the body at the place where the foil is mounted

% (at center of root chord)

r = interp1(body.shape.x,body.shape.r,foil(i).Xo+foil(i).Cr/2);

% Calculate the derivatives for th current combination

FoilOut(i) = foilbodyInteraction(foil(i), r, body, Xm);

Totaldrag = Totaldrag + foil(i).Cdo*RFB;

% WingDerivatives(i) = foil(i).derivatives;

end

FoilBody = FoilOut;

116 Appendix B. MatlabSource code

%%

%%%%%%%% Functions used in calculations

%%%%%%%% Calculates foil-body interaction

%%

function foil_body = foilbodyInteraction(foil,r, body, Xm)

%%

% Calculate the hydrodynamic center contribution (X’_ac/Cre)_b(w)

% Expression is constructed according to Blakelock (1991, page 560)

% [beta = sqrt(abs(1-M^2))= 1 (where M is the mach number) is 1 for all

% practical AUV/marine applications]- ref: Håvard Bø 30.03.2004

s = foil.Span/2; % foil semispan (temporary variable)

b = foil.Span; % foil-span (temporary variable)

D = 2*r;

A= foil.AR;

Cr = foil.Cr;

Lpp = body.Param.Lpp;

BodyFoil.Plane = foil.Plane;

%%

% Calculate foil body interference factors

% Source Pitts et.al (1957)

%%

[Kfb, Kbf, kfb, kbf] = interferenceFactors(D,b);

BodyFoil.Kfb = Kfb;

BodyFoil.Kbf = Kbf;

BodyFoil.kfb = kfb;

BodyFoil.kbf = kbf;

clear Kfb Kbf kfb kbf

%%

%%

% Lift curve slope, foil body combination

% Source Datcom

%%

BodyFoil.ClaInfo = ’Lift curve slope foil body combination (Based on Lpp^2)’;

BodyFoil.Cla = (BodyFoil.Kfb+BodyFoil.Kbf)*foil.Cla + body.derivatives.Cla;

%%

%%

% Lift from control surface deflection

% Source Datcom

%%

BodyFoil.CldeltaInfo = ’Lift from control surface deflection (Based on Lpp^2)’;

BodyFoil.Cldelta = (BodyFoil.kfb+BodyFoil.kbf)*foil.Cla;

%%

%%

% Calculate hydrodynamic center due to lift carryover

% Source Datcom

%%

BodyFoil.sim.XhcInfo = ’Hydrodynamic center, due to lift carryover, relative to Xm (m)’;

BodyFoil.sim.Xhc = calcHcfoilbodyComb(foil, foil.D, Xm);

BodyFoil.sim.XhcHatInfo = ’Hydrodynamic center, due to lift relative to Xm (based on Lpp)’;

BodyFoil.sim.XhcHat = BodyFoil.sim.Xhc/Lpp;

%%

%%

% Calculate the pitching moment

B.1. hde-toolbox 117

% Source Datcom

%%

BodyFoil.CmaInfo = ’Pitching moment (Based on Lpp^3)’;

BodyFoil.Cma = body.derivatives.Cma + ...

(Xm-foil.hc)/Lpp * BodyFoil.Kfb * foil.Cla + ...

BodyFoil.sim.XhcHat * BodyFoil.Kbf * foil.Cla;

% Contribution from body +

% body in presence of foil +

% foil in presence of body

%%

%%

% Calculate the Hydrodynamic center

%%

BodyFoil.XhcInfo = ’Hydrodynamic center of pressure, relative to Xm (Based on Lpp)’;

BodyFoil.Xhc = BodyFoil.Cma/BodyFoil.Cla;

%%

%%

% Calculate the pithing moment from due to foil incidense

%%

BodyFoil.CmdeltaInfo = ’Pitching moment due to foil incidence (Based on Lpp^3)’;

BodyFoil.Cmdelta = -BodyFoil.Cldelta * BodyFoil.sim.XhcHat;

%%

%%

% Calculate the pitching derivative Clq

% Source: Datcom (1978)

%%

BodyFoil.ClqInfo = ’foil pitching derivative, Clq (Based on Lpp^3)’;

BodyFoil.Clq = (BodyFoil.Kfb + BodyFoil.Kbf)*foil.Clq+ body.derivatives.Clq;

%%

%%

% Calculate the pitching derivative Cmq

% Source: Datcom (1978)

%%

BodyFoil.CmqInfo = ’foil pitching derivative, Cmq (Based on Lpp^4)’;

BodyFoil.Cmq = (BodyFoil.Kfb + BodyFoil.Kbf)*foil.Cmq+ body.derivatives.Cmq;

%%

foil_body = BodyFoil;

%%

%%%%%%%%%%%%% End of function foilbodyInteraction(...)

%%

%%

% Local functions

%%

% Foil body interference factors

% Source: Pitts et.al (1957)

function [Kfb, Kbf, kfb, kbf] = interferenceFactors(d,b)

r = d/2;

s = b/2;

Kwb_num = (1+(r/s)^4)*((1/2*atan(1/2*(s/r-r/s)))+pi/4) - (r/s)^2*((s/r-r/s)+2*atan(r/s));

Kwb_den = (1-r/s)^2;

Kfb = (2/pi)*Kwb_num/Kwb_den; clear Kwb_num Kwb_den;

Kbw_num = (1-r^2/s^2)^2-2/pi * ...

((1+r^4/s^4)*(1/2*atan(1/2*(s/r-r/s)) + pi/4) - ...

r^2/s^2*((s/r-r/s) +2*atan(r/s)));

Kbw_den = (1-r/s)^2;

118 Appendix B. MatlabSource code

Kbf = Kbw_num/Kbw_den; clear Kbw_den Kbw_num

tau = b/d;

kfb = 1/pi^2*...

(1./4.*pi.^2.*(tau+1).^2./tau.^2+pi.*(tau.^2+1).^2./tau.^2./(tau-1).^2.*...

asin((tau.^2-1)./(tau.^2+1))-2.*pi.*(tau+1)./tau./(tau-1)+...

(tau.^2+1).^2./tau.^2./(tau-1).^2.*asin((tau.^2-1)./(tau.^2+1)).^2-...

4./tau.*(tau+1)./(tau-1).*asin((tau.^2-1)./(tau.^2+1))+...

8./(tau-1).^2.*log((tau.^2+1)./2./tau));

kbf = Kfb -kfb;

%%

% Contribution due to the lift carryover of the foil on the body:

% (DATCOM, Equation 4.3.2.2-c)

%%

function Xhc = calcHcfoilbodyComb(foil, D, Xm)

b= foil.Span;

k = D/b; % diameter to span ratio

tanLambdaC_4 = tan(foil.Sweep.C4); % Sweep of c/4

tanLambdaLe = tan(foil.Sweep.Le); % tan(Lambda_le) Sweep of leading edge

numBracket = sqrt(1-2*k)*log((1-k)/k+1/k*sqrt(1-2*k))-(1-k)+k*pi/2;

denBracket = k*(1-k)/sqrt(1-2*k)*log((1-k)/k+1/k*sqrt(1-2*k)) + (1-k)^2/k-pi/2*(1-k);

% Calculate Xhc/Cre for (\beta AR_e >= 4)

BetaAR4 = 1/4 + (b-D)/(2*foil.Cr)*tanLambdaC_4*...

(-k/(1-k)+ numBracket/denBracket);

% The proceure below is necessary in order to interpolate the hydrodynamic

% centre due to lift carryover of the foil on the body if the aspectratio of the

% exposed foil is less than 4 (Blakelock, page 560)

%

if foil.AR < 4 % Interpolation required

% Calculate Xhc/Cre for (\beta AR_e = 0)

gamma = 1/4*(foil.AR*(1+ foil.lambda)* tanLambdaLe);

if gamma<1 && gamma>=0; BetaAR0 = 0.5*gamma;

else BetaAR0 = 0.5; end

% construct polynomal for interpolation

% Y = aa*(x-4)^2 + bb

syms x

aa = (BetaAR0-BetaAR4)/(0-4)^2;

bb = BetaAR4;

Y = aa*(x-4)^2+bb;

Y = inline(char(Y));

% Interpolated value for (Xhc/Cre)_B(W)

foilpart = real(Y(foil.AR));

clear aa bb Y x

else

foilpart = BetaAR4;

end

Xhc = Xm - (foil.Xo + foil.Cr*foilpart);

B.1.13 foilCalc.m

function Output = foilCalc(FoilInput,Body)

% Calculate various lift and moment coefficients for different wings

%

B.1. hde-toolbox 119

% function call: foilCalc(Foil,Body)

% where:

% Body: Structure of Body (format given by bodyCalc.m)

%

% Foil: is a structure:

% Foil.Plane: In which plane te foil section is mounted (’XY’, ’XZ’)

% Foil.Profile: String with the name of the foil profile

% Foil.Cr: Length of root chord [m]

% Foil.Ct: Length of tip chord [m]

% Foil.Span: Foil span (tip to tip) [m]

% Foil.Xo: Leading edge of the root chord of the foil [m]

% Available foils are:

% * NACA-0012

availableFoils = ’’;

availableFoils = sprintf(’%sNACA_0012 \n’,availableFoils);

% References:

% Roskam, Jan (1979), "Airplane flight dynamics and automatic flight

% controls, Part1" [Book]

% Blakelock, John H (1991), "Automatic control of aircrafts and missiles"

% [Book]

% Datcom, (1978), "USAF Stability and Control Datcom", :Authors: Hoak, D E AND Finck, R D

%

% Hoerner, Sighart F (1985), "Fluid dynamic lift" [Book]

% Pitts, William C & Nielsen, Jack N & Kaattari, George E (1957),"Lift and

% center of pressure of foil-body-tail combinations at subsonic, transonic,

% and supersonic speeds". NACA tecnical report 1307

% Whicker, L F & Fehlner, L F (1958), "Free-stream characteristics of a family of low-aspect-ratio,

% all movable control surfaces for application to ship design", Navy Department-

% The David W. Taylor Model Basin

for i = 1 : length(FoilInput)

Foil = FoilInput(i);

% **

% Chech for valid inputs and call the correct procedure

try

foilData = feval(sprintf(’%s’,Foil.Profile));

catch error(sprintf(’Foil profile "%s" is not available\n Available foils are:\n %s’,...

Foil.Profile, availableFoils));

end

Lpp = Body.Param.Lpp; % Nondimensionalize coefficients with Lpp

Output(i) = currentFoil(Foil, Body, Lpp, foilData);

% **

end % for

function FoilOut = currentFoil(Foil, Body , Lpp, foilData)

% Find diameter where foil is mounted

Foil.D = 2*interp1(Body.shape.x, Body.shape.r, Foil.Xo + Foil.Cr/2);

Foil.lambda = Foil.Ct/Foil.Cr; % Foil taper ratio

Foil.Ymac = 1/3* (1+2*Foil.lambda)/(1+Foil.lambda)*(Foil.Span-Foil.D)/2 + Foil.D/2;

% Mean hydrodynamic chord (Roskam-1979, page 68)

Foil.Cmac = 2/3*Foil.Cr*(1+Foil.lambda+Foil.lambda^2)/(1+Foil.lambda); % Chord length at Cp

% Load the lift curve from functions

Foil.Curve = foilData.curve;

% Prepare foilprofile used in plotting and volume/mass calculations

NDISCw = 100; % Number of discrete points

Xtemp = 0:1/NDISCw:1;

Yw_tempU = Foil.Curve.upper(Xtemp); % Foil curve is normalized (0,1)

Yw_tempL = Foil.Curve.lower(Xtemp); % Foil curve is normalized (0,1)

Ytip = Foil.Ct * [Yw_tempU;Yw_tempL];

Xtip = Foil.Xo + Foil.Cr/2 + Foil.Ct*(-0.5 + Xtemp);

Yroot = Foil.Cr * [Yw_tempU;Yw_tempL];

120 Appendix B. MatlabSource code

Xroot = Foil.Xo + Foil.Cr*Xtemp;

Pointed.root.x = Xroot;

Pointed.root.y = Yroot;

Pointed.tip.x = Xtip;

Pointed.tip.y = Ytip;

Di = 2*interp1(Body.shape.x, Body.shape.r, Xroot);

z = 0.5 * [Di; Foil.Span* ones(1,length(Xroot))];

Pointed.root.z = z(1,:);

Pointed.tip.z = z(2,:);

Foil.Curve.Discrete = Pointed;

Foil.Volume = calcFoilVolume(Pointed);

Foil.cla2d = foilData.c_l; % Two dimensional lift coeff

clear foilData Pointed Xroot Yroot Xtip Ytip% Clear temporary variables

clear Yw_tempU Yw_tempL Xtemp z Di NDISCw

% Calculate foil areas (There are two foils corresponding to one foil section)

Foil.Sinfo = (’Exposed foil area (m^2)’);

Foil.S = 2*calcFoilArea(Foil.Cr, Foil.Ct, Foil.Span/2, Foil.D/2); % Area of exposed foils

% Calculate wetted surface of the foil

Foil.SwfInfo = (’Wetted area (m^2)’);

dx = 0.01; x = 0:dx:1;

Foil.Swf = 2*Foil.S*...

2*sum(sqrt(Foil.Curve.upper(x).^2 + x.^2)*dx); % See Bø, H Msc Thesis;

% Calculate foil aspect ratio

Foil.ARinfo = ’Aspect ratio, exposed foil’;

Foil.AR = (Foil.Span-Foil.D)^2/Foil.S; % Aspect ratio exposed foil

% Calculate foil sweep angles used in further calculations

Foil.Sweep.Le = sweepAngle(0, 0, Foil.AR, Foil.lambda);

Foil.Sweep.C4 = sweepAngle(0.25, 0, Foil.AR, Foil.lambda);

Foil.Sweep.C4 = sweepAngle(0.25, 0, Foil.AR, Foil.lambda);

% Hydrodynamic center of foil relative to nose

Foil.hcInfo = ’Hydrodynamic center of foil relative to nose (m)’;

Foil.hc = Foil.Xo + Foil.Cr/4 + (Foil.Ymac-Foil.D/2)*tan(Foil.Sweep.C4);

% Prepare output structure

FoilOut = Foil;

%%

%%%%%%%%%%% End of currentFoil() function

%%

% Calculate Chord lenght of the extended foil

% Input:

% Cr: foil root chord [m]

% Ct: foil tip chord [m]

% D: Diameter of the body [m]

% Span: tip to tip foil span [m]

function Cre = calcExtCr(Cr,Ct,D,Span)

temp = (Cr-Ct)/((Span-D)/2); % D-chord/ D-span

Cre = Foil.Cr + (D/2)*temp; % Extended foil max chord

% Calculate area of the foil

% Input:

% Cr: foil root chord [m]

% Ct: foil tip chord [m]

B.1. hde-toolbox 121

% Yt:

% Yi:

function Area = calcFoilArea(Cr,Ct,Yt,Yi)

Area = 1/2*(Cr+Ct)*(Yt-Yi);

function volume = calcFoilVolume(Pointed)

% Prepare for trapezoidal integration

dx = 0.5 * ((Pointed.root.x(1:length(Pointed.root.x)-1) +...

Pointed.root.x(2:length(Pointed.root.x))) - ...

(Pointed.tip.x(1:length(Pointed.root.x)-1) +...

Pointed.tip.x(2:length(Pointed.root.x))));

dz = 0.5 * ((Pointed.root.z(1:length(Pointed.root.z)-1) +...

Pointed.root.z(2:length(Pointed.root.z))) - ...

(Pointed.tip.z(1:length(Pointed.root.z)-1) +...

Pointed.tip.z(2:length(Pointed.root.z))));

h = sqrt((dx.^2 + dz.^2)); % Mean height of box

% Used for calculation of base area

Yir = 0.5* (Pointed.root.y(:,1:length(Pointed.root.y)-1) + ...

Pointed.root.y(:,2:length(Pointed.root.y)));

Yit = 0.5* (Pointed.tip.y(:,1:length(Pointed.tip.y)-1) + ...

Pointed.tip.y(:,2:length(Pointed.tip.y)));

dXir = Pointed.root.x(2:length(Pointed.root.x)) -...

Pointed.root.x(1:length(Pointed.root.x)-1);

dXit = Pointed.tip.x(2:length(Pointed.tip.x)) -...

Pointed.tip.x(1:length(Pointed.tip.x)-1);

% There are two foils for each section

volume = sum(h.*... % height of one box

(dXit.*(Yit(1,:)-Yit(2,:)) +... % area of tip

dXir.*(Yir(1,:)-Yir(2,:)))); % area of root

% Description of foil profiles

% Parameters is found in Abbot (1959). In order to implement new foil

% series, the parameters "dLdadeg" and "c_d" should be specified. Abbot

% has a collection of these parameters for a number of foil profiles.

% The parameters for the NACA_0012 foil profile is found in Abbot page

% 463 (for the section drag coeff c_d) and figure 57(a) for the Lift

% curve slop (pr degree)

% In addition,

function out = NACA_0012()

dLdadeg = 0.11; % N/deg (Lift curve slope) Abbot (1959, fig 57(a))

% Calculate Sectional drag coeff, Abbot (1959, p 463)

% Approximately: Y = aa*x^2+bb

syms x

bb = 0.006; % Min Cd for cl = 0

aa = (0.013-bb)/1.2^2;

Y = inline(char(aa*x^2+bb)); % Curve fit

out.c_d = Y(dLdadeg); % Sectional drag coefficient

out.c_l = dLdadeg*180/pi; % N/rad

t = 0.12; % maximum thickness as a fraction of chord

% inline function for normalised curve, Abbot (1959, p. 113)

Y = sprintf(’%1.5f* (0.2969*sqrt(x)-0.126*x-0.3516*x.^2+0.2843*x.^3-0.1015*x.^4)’,t/0.2);

out.curve.upper = inline(Y);

out.curve.lower = inline([’-’,Y]);

% Sweep angle at n chordwise location

% (LAMBDA = sweepangle at 0,5*chordlength) - See i.e Roskam

function SAn = sweepAngle(n, LAMBDA, AR, lambda)

m = 0.5;

SAn = atan(tan(LAMBDA) - 4*(n-m)/AR*(1-lambda)/(1+lambda));

122 Appendix B. MatlabSource code

B.1.14 foilDialog.m

function varargout = FoilDialog(varargin)

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’gui_Name’, mfilename, ...

’gui_Singleton’, gui_Singleton, ...

’gui_OpeningFcn’, @FoilDialog_OpeningFcn, ...

’gui_OutputFcn’, @FoilDialog_OutputFcn, ...

’gui_LayoutFcn’, [] , ...

’gui_Callback’, []);

if nargin & isstr(varargin{1})

gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before FoilDialog is made visible.

function FoilDialog_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to FoilDialog (see VARARGIN)

% Choose default command line output for FoilDialog

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

if strcmp(get(hObject,’Visible’),’off’)

initialize_gui(hObject, handles);

end

% UIWAIT makes FoilDialog wait for user response (see UIRESUME)

uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = FoilDialog_OutputFcn(hObject, eventdata, handles)

% Get default command line output from handles structure

varargout{1} = handles.output;

% Clear wing dialog

delete(handles.figure1);

% --- Executes during object creation, after setting all properties.

function Cr_EditBox_CreateFcn(hObject, eventdata, handles)

usewhitebg = 1;

if usewhitebg

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

B.1. hde-toolbox 123

function Cr_EditBox_Callback(hObject, eventdata, handles)

temp = str2double(get(hObject,’String’));% returns contents of Ct as a double

if isnan(temp) || ~min(size(temp) == [1 1])

set(hObject, ’string’, sprintf(’%1.4f’,0.09))

elseif temp < 0

set(hObject, ’string’, sprintf(’%1.4f’,0.09))

else

set(hObject, ’string’, sprintf(’%1.4f’,temp))

end

% --- Executes during object creation, after setting all properties.

function Ct_EditBox_CreateFcn(hObject, eventdata, handles)

usewhitebg = 1;

if usewhitebg

set(hObject,’BackgroundColor’,’white’);

else

set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

function Ct_EditBox_Callback(hObject, eventdata, handles)

temp = str2double(get(hObject,’String’));% returns contents of Ct as a double

if isnan(temp) || ~min(size(temp) == [1 1])

set(hObject, ’string’, sprintf(’%1.4f’,0.06))

elseif temp < 0

set(hObject, ’string’, sprintf(’%1.4f’,0.06))

else

set(hObject, ’string’, sprintf(’%1.4f’,temp))

end

% --- Executes during object creation, after setting all properties.

function WingSpan_EditBox_CreateFcn(hObject, eventdata, handles)

usewhitebg = 1;

if usewhitebg; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

function WingSpan_EditBox_Callback(hObject, eventdata, handles)

temp = str2double(get(hObject,’String’));% returns contents of Ct as a double

if isnan(temp) || ~min(size(temp) == [1 1])

set(hObject, ’string’, sprintf(’%1.4f’,0.44))

elseif temp < 0

set(hObject, ’string’, sprintf(’%1.4f’,0.44))

else

set(hObject, ’string’, sprintf(’%1.4f’,temp))

end

function initialize_gui(fig_handle, handles)

% --- Executes on button press in WingApply_Button.

function WingApply_Button_Callback(hObject, eventdata, handles)

Profiles = get(handles.WingProfile_ListBox,’String’);

Profile = Profiles(get(handles.WingProfile_ListBox,’Value’)); % Get active profile

Xo = str2double(get(handles.Ledge_EditBox,’String’));

Planes = get(handles.Plane_ListBox,’String’);

Plane = Planes(get(handles.Plane_ListBox,’Value’)); % Get active plane

Ct = str2double(get(handles.Ct_EditBox,’String’));

Cr = str2double(get(handles.Cr_EditBox,’String’));

Span = str2double(get(handles.WingSpan_EditBox,’String’));

124 Appendix B. MatlabSource code

Rho = str2double(get(handles.WingDensity_Input,’String’));

Wing.Profile = char(Profile);

Wing.Rho = Rho;

Wing.Xo = Xo;

Wing.Plane = char(Plane);

Wing.Ct = Ct;

Wing.Cr = Cr;

Wing.Span = Span;

handles.output = Wing;

% Update handles structure

guidata(hObject, handles);

uiresume(handles.figure1);

% --- Executes on button press in WingCancel_Button.

function WingCancel_Button_Callback(hObject, eventdata, handles)

handles.output = [];

% Update handles structure

guidata(hObject, handles);

uiresume(handles.figure1);

% --- Executes during object creation, after setting all properties.

function WingProfile_ListBox_CreateFcn(hObject, eventdata, handles)

if ispc; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

% --- Executes on selection change in WingProfile_ListBox.

function WingProfile_ListBox_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function Plane_ListBox_CreateFcn(hObject, eventdata, handles)

if ispc ; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

% --- Executes on selection change in Plane_ListBox.

function Plane_ListBox_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.

function Ledge_EditBox_CreateFcn(hObject, eventdata, handles)

if ispc ; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

function Ledge_EditBox_Callback(hObject, eventdata, handles)

temp = str2double(get(hObject,’String’));% returns contents of Ct as a double

if isnan(temp) || ~min(size(temp) == [1 1])

set(hObject, ’string’, sprintf(’%1.4f’,1.225))

elseif temp < 0

set(hObject, ’string’, sprintf(’%1.4f’,1.225))

else

set(hObject, ’string’, sprintf(’%1.4f’,temp))

end

% --- Executes during object creation, after setting all properties.

function WingDensity_Input_CreateFcn(hObject, eventdata, handles)

if ispc; set(hObject,’BackgroundColor’,’white’);

else set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’));

end

B.1. hde-toolbox 125

function WingDensity_Input_Callback(hObject, eventdata, handles)

temp = str2double(get(hObject,’String’));%

if isnan(temp) || ~min(size(temp) == [1 1])

set(hObject, ’string’, sprintf(’%d’,2700))

elseif temp < 0

set(hObject, ’string’, sprintf(’%d’,2700))

else

set(hObject, ’string’, sprintf(’%d’,temp))

end

B.1.15 massNonDim.m

function nonDim = massNonDim(M,L, Rho)

nonDim = zeros(6,6); % Initialize matrix

for i = 1:6

for j = 1:6

if max(i==[1 2 3]) && max(j==[1 2 3])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^3);

elseif max(i==[1 2 3]) && max(j==[4 5 6])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^4);

elseif max(i==[4 5 6]) && max(j==[1 2 3])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^4);

elseif max(i==[4 5 6]) && max(j==[4 5 6])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^5);

else error(’Something is wrong’);

end % if

end %for

end % for

B.1.16 MrigidBody.m

function nonDim = massNonDim(M,L, Rho)

nonDim = zeros(6,6); % Initialize matrix

for i = 1:6

for j = 1:6

if max(i==[1 2 3]) && max(j==[1 2 3])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^3);

elseif max(i==[1 2 3]) && max(j==[4 5 6])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^4);

elseif max(i==[4 5 6]) && max(j==[1 2 3])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^4);

elseif max(i==[4 5 6]) && max(j==[4 5 6])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^5);

else error(’Something is wrong’);

end % if

end %for

end % for

B.1.17 rudderTerms.m

function nonDim = massNonDim(M,L, Rho)

nonDim = zeros(6,6); % Initialize matrix

for i = 1:6

for j = 1:6

if max(i==[1 2 3]) && max(j==[1 2 3])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^3);

elseif max(i==[1 2 3]) && max(j==[4 5 6])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^4);

elseif max(i==[4 5 6]) && max(j==[1 2 3])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^4);

elseif max(i==[4 5 6]) && max(j==[4 5 6])

nonDim(i,j) = M(i,j)/(0.5*Rho*L^5);

126 Appendix B. MatlabSource code

else error(’Something is wrong’);

end % if

end %for

end % for

Appendix C

WAMIT- runs

Below, are the input files necessary for estimation of the added-mass coefficients of an AUV, identical
to the one considered in Chapter 4, with the aid of WAMIT. to use WAMIT for and output files used
The vehicle is identical . The din a sequence of WAMIT runs of an AUV similar to the vehicle planned
to undergo towing tank experiments in the Marine Cybernetics Towing Tank during the fall of 2004.
All files presented in the following are also included in a digital format in Appendix D.

C.1 Input files
In this section, input files used in the WAMIT runs are described in some detail. For additional
information, the reader is advised to consult WAMIT-Inc (2003).

C.1.1 Fnames.wam
This file is optional, and is simply a list of the other input file names including their respective
extensions.

Maia.cfg

Maia.pot

Maia.frc

Maia.gdf

C.1.2 Maia.cfg

This is the configuration file used to specify various parameters and options
in WAMIT. For details about the various parameters, the reader is advised to
consult (WAMIT-Inc 2003, Section 3.7).

MAXSCR=1024

ILOWHI=1

IPERIO=1

IALTFRC=2

IALTPOT=2

IRR=0

ISOLVE=1

NUMHDR=1

NOOUT=1 1 1 1 0 1 1 1 1

USERID_PATH=\WAMITv6 (directory for *.exe, *.dll, and userid.wam)

panel_size= 0.02

IPNLBPT=1

C.1.3 Maia.pot

This file is the Potential Control File used for input of various parameters to
the POTEN subprogram in WAMIT. It should be noted that Alternative Form

127

128 Appendix C. WAMIT- runs

2, IALTPOT=2, is used (WAMIT-Inc 2003, Section 3.2). Important variables
are:

HBOT Water depth. (1.5m is the depth of the Marine Cybernetics Towing

Tank). A number less than or equal zero is interpreted to mean that the
water depth is infinite.

NPER Is the number of wave periods to be analyzed. A negative number (-10)
is used in Section C.2.2 and C.2.3.

PER Is the wave period(s), T , in seconds. In Section C.2.2 and C.2.3, {0.1 1}
and {1 10} are used respectively.

XBODY(3) is the depth of the body fixed reference point (center of buoyancy).
Note that the z-axis is positive upward in WAMIT.

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

1.5 HBOT, 1.5M waterdepth

1 1 IRAD, IDIFF

1 NPER (array PER follows)

0 Wave period, in seconds

1 NBETA (array BETA follows)

0 Wave headings

1 NBODY

Maia.gdf MultiSurf model (igdef=2)

0. 0. -0.75 0.0 XBODY, body fixed coord vs global

1 1 1 1 1 1 IMODE(1-6)

0 NEWMDS

C.1.4 Maia.frc

This file is used for input of various parameters to the FORCE subprogram in
WAMIT. Because it is possible to specify separately three independent exter-
nal force matrices including the mass matrix of the body, an external damping
matrix, and an external stiffness matrix, Alternative Form 2 is used. This per-
mits the analysis of bodies which are not freely floating in waves, with arbitrary
linear external forces and moments, and also permits the specification of the
complete body mass matrix instead of the simpler radii of gyration. In this
work, however, only the mass matrix was specified.

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

1 0 0 0 0 0 0 0 0 IOPTN(1-9)

1025.0 RHO, Denisity of sea water

0.0 0.0 -0.02 Center of gravity

1 Read massmatrix (next 6 lines)

47.01 0.0 0.0 0.0 0.0 0.0

0.00 47.01 0.0 0.0 0.0 0.0

0.00 0.0 47.01 0.0 0.0 0.0

0.00 0.0 0.0 0.2327 0.0 0.0

0.00 0.0 0.0 0.0 8.4416 0.0

0.00 0.0 0.0 0.0 0.0 8.4416

0 Do not read any external damping matrix

0 Do not read any external stifness matrix

0 NBETAH

0 NFIELD

C.1. Input files 129

C.1.5 Maia.gdf

This is the file that describe the geometry of the body to be analyzed. In this
work, the Relation Geometry Kernel (RGKernel) of the CAD program MultiSurf
is used to specify the geometry. Important variables are:

ULEN is the dimensional length characterizing the body dimension. This pa-
rameter corresponds to the quantity used to nondimensionalize the quan-
tities output from WAMIT.

ISY The body is symmetric about the x− z plane (Only half of the body need
to be modelled in MultiSurf)

NPATCH is the number of surfaces described in the ObjecList of the MultiSurf
model.

WettedSurfs Name of the ObjectList included in the MultiSurf model Maia.ms2.

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

1.64 9.80665 ULEN, GRAV

0 1 ISX, ISY

4 2 NPATCH, IGDEF

3 NLINES (lines to follow)

Maia.ms2

WettedSurfs

0 0 1 FAST,DivMult, inward normals

C.1.6 Maia.ms2

MultiSurf 1.24

Units: m kg

Symmetry: y

Extents: -1.637 -200.000 -0.100 1.637 200.000 0.100

View: -30.00 60.00 0

Places: 3

Layers: 30000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

DivMult: 1

Attribute: __Nudge DOUBLE SYSTEM(0.10000000000000001)

Attribute: __layer11 STRING SYSTEM("CenterLine")

Attribute: __layer2 STRING SYSTEM("Nose-Points")

Attribute: __layer3 STRING SYSTEM("Tail-Points")

Attribute: __layer4 STRING SYSTEM("AUV-Curve")

Attribute: __layer5 STRING SYSTEM("Foil-Points")

Attribute: __layer6 STRING SYSTEM("TipPoints")

Attribute: __layer7 STRING SYSTEM("TopCurves-Foil")

Attribute: __layer9 STRING SYSTEM("CurvesFoilLower")

Attribute: __layer20 STRING SYSTEM("FoilMagnet")

Attribute: __layer1 STRING SYSTEM("Surfaces")

BeginModel;

AbsPoint NoseVertex 14 1 L:2 / 0.781 0.000 0.000 ;

RelPoint p0 14 1 L:2 / NoseVertex -0.002 0.027 0.000 ;

RelPoint p1 14 1 L:2 / NoseVertex -0.004 0.034 0.000 ;

RelPoint p2 14 1 L:2 / NoseVertex -0.008 0.043 0.000 ;

RelPoint p3 14 1 L:2 / NoseVertex -0.012 0.049 0.000 ;

RelPoint p4 14 1 L:2 / NoseVertex -0.018 0.056 0.000 ;

RelPoint p5 14 1 L:2 / NoseVertex -0.025 0.062 0.000 ;

RelPoint p6 14 1 L:2 / NoseVertex -0.035 0.068 0.000 ;

RelPoint p7 14 1 L:2 / NoseVertex -0.050 0.076 0.000 ;

RelPoint p8 14 1 L:2 / NoseVertex -0.070 0.083 0.000 ;

RelPoint p9 14 1 L:2 / NoseVertex -0.100 0.091 0.000 ;

RelPoint p10 14 1 L:2 / NoseVertex -0.140 0.097 0.000 ;

130 Appendix C. WAMIT- runs

RelPoint p11 14 1 L:2 / NoseVertex -0.200 0.100 0.000 ;

RelPoint TailLe 14 1 L:3 / p11 -1.200 0.000 0.000 ;

RelPoint p13 14 1 L:3 / TailLe -0.030 -0.003 0.000 ;

RelPoint p14 14 1 L:3 / TailLe -0.050 -0.007 0.000 ;

RelPoint p15 14 1 L:3 / TailLe -0.080 -0.018 0.000 ;

RelPoint p16 14 1 L:3 / TailLe -0.100 -0.026 0.000 ;

RelPoint p17 14 1 L:3 / TailLe -0.130 -0.041 0.000 ;

RelPoint p18 14 1 L:3 / TailLe -0.150 -0.052 0.000 ;

RelPoint p19 14 1 L:3 / TailLe -0.180 -0.069 0.000 ;

RelPoint p20 14 1 L:3 / TailLe -0.200 -0.080 0.000 ;

RelPoint p21 14 1 L:3 / TailLe -0.220 -0.090 0.000 ;

RelPoint p22 14 1 L:3 / TailLe -0.230 -0.095 0.000 ;

RelPoint TailEnd 14 1 L:3 / TailLe -0.240 -0.100 0.000 ;

BCurve AUVbodyCurve 11 1 8x4 L:4 / * 2

{ NoseVertex p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 TailLe p13 p14

p15 p16 p17 p18 p19 p20 p21 p22 TailEnd } ;

Line l0 6 1 1x1 L:11 / * NoseVertex TailEnd ;

RevSurf BodySurf 2 3 16x8 16x8 0 L:1 / * AUVbodyCurve l0 -90.0000

90.0000 ;

RelPoint FoilLe 14 1 L:5 / NoseVertex -1.255 0.000 0.000 ;

RelPoint FoilLe0 14 1 L:5 / FoilLe -0.005 0.000 0.003 ;

RelPoint FoilLe1 14 1 L:5 / FoilLe -0.010 0.000 0.004 ;

RelPoint FoilLe2 14 1 L:5 / FoilLe -0.015 0.000 0.005 ;

RelPoint FoilLe3 14 1 L:5 / FoilLe -0.025 0.000 0.005 ;

RelPoint FoilLe4 14 1 L:5 / FoilLe -0.035 0.000 0.005 ;

RelPoint FoilLe5 14 1 L:5 / FoilLe -0.045 0.000 0.005 ;

RelPoint FoilLe6 14 1 L:5 / FoilLe -0.055 0.000 0.004 ;

RelPoint FoilLe7 14 1 L:5 / FoilLe -0.065 0.000 0.003 ;

RelPoint FoilLe8 14 1 L:5 / FoilLe -0.075 0.000 0.002 ;

RelPoint FoilLe9 14 1 L:5 / FoilLe -0.085 0.000 0.001 ;

RelPoint FoilLe10 14 1 L:5 / FoilLe -0.090 0.000 0.000 ;

BCurve AUVbodyCurve0 11 1 8x4 L:7 / * 2

{ FoilLe FoilLe0 FoilLe1 FoilLe2 FoilLe3 FoilLe4 FoilLe5 FoilLe6

FoilLe7 FoilLe8 FoilLe9 FoilLe10 } ;

RelPoint FoilMagnet 14 1 L:20 / FoilLe -0.045 200.000 0.000 ;

ProjSnake2 n0 13 1 8x4 L:7 / * AUVbodyCurve0 BodySurf FoilMagnet 0.0000

;

RelPoint FoilLetTip 14 1 L:6 / FoilLe -0.015 0.220 0.000 ;

RelPoint FoilLe13 14 1 L:6 / FoilLetTip -0.005 0.000 0.003 ;

RelPoint FoilLe14 14 1 L:6 / FoilLetTip -0.008 0.000 0.003 ;

RelPoint FoilLe15 14 1 L:6 / FoilLetTip -0.015 0.000 0.004 ;

RelPoint FoilLe16 14 1 L:6 / FoilLetTip -0.020 0.000 0.004 ;

RelPoint FoilLe17 14 1 L:6 / FoilLetTip -0.029 0.000 0.003 ;

RelPoint FoilLe18 14 1 L:6 / FoilLetTip -0.030 0.000 0.003 ;

RelPoint FoilLe19 14 1 L:6 / FoilLetTip -0.035 0.000 0.003 ;

RelPoint FoilLe20 14 1 L:6 / FoilLetTip -0.045 0.000 0.002 ;

RelPoint FoilLe21 14 1 L:6 / FoilLetTip -0.055 0.000 0.001 ;

RelPoint FoilLe22 14 1 L:6 / FoilLetTip -0.060 0.000 0.000 ;

BCurve AUVbodyCurve1 11 1 8x4 L:7 / * 2

{ FoilLetTip FoilLe13 FoilLe14 FoilLe15 FoilLe16 FoilLe17 FoilLe18

FoilLe19 FoilLe20 FoilLe21 FoilLe22 } ;

RuledSurf FoilTop 2 3 32x1 1x1 0 L:1 / * n0 AUVbodyCurve1 ;

Line MirrLineFoil 6 1 1x1 L:2 / * FoilLetTip FoilLe22 ;

MirrCurve AUVbodyCurve2 11 1 8x4 L:9 / * AUVbodyCurve0 l0 ;

ProjSnake n1 13 1 8x4 L:9 / * AUVbodyCurve2 BodySurf FoilMagnet ;

MirrCurve AUVbodyCurve3 11 1 8x4 L:9 / * AUVbodyCurve1 MirrLineFoil ;

RuledSurf FoilBottom 2 3 32x1 1x1 0 L:1 / * AUVbodyCurve3 n1 ;

RuledSurf FoilTip 2 3 32x1 1x1 0 L:1 / * AUVbodyCurve1 AUVbodyCurve3 ;

ObjectList WettedSurfs /

{ BodySurf FoilTop FoilBottom FoilTip } ;

EndModel;

C.2. Output 131

C.2 Output

It is important to observe that all added-mass, A(I,J), and damping coefficients,
B(I,J), from WAMIT are nondimensionalized according to

Āij =
Aij

ρ Lk
, B̄ij =

Bij

ρ Lkω
,

where L is the length scale defined by the input parameter ULEN in the GDF file
(Section C.1.5), ω is the wave frequency (rad/s); and k = 3 for i, j = 1, 2, 3,
k = 4 for i = 1, 2, 3, j = 4, 5, 6 or i = 4, 5, 6, j = 1, 2, 3 and k = 5 for
i, j = 4, 5, 6.

C.2.1 Wave period, zero

WAMIT Version 6.1

Copyright (c) 1999-2002 WAMIT Incorporated

Copyright (c) 1998 Massachusetts Institute of Technology

The WAMIT software performs computations of wave interactions with

floating or submerged vessels. WAMIT is a registered trademark of

WAMIT Incorporated. This copy of the WAMIT software is licensed to

CESOS

Norwegian University of Science and Technology

Trondheim, Norway

For educational use only at the above location. Release date 20 JUN 2002

High-order panel method (ILOWHI=1) Panel_Size = 0.02000

Input from Geometric Data File: Maia.gdf

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

Input from Potential Control File: maia.pot

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

POTEN run date and starting time: 14-Jul-2004 -- 16:13:57

Period Time RAD DIFF (max iterations)

0.0000 16:14:48 -1

Gravity: 9.80665 Length scale: 1.64000

Water depth: 1.50000 Water density: 1025.00000

Panel quadrature indices: IQUAD = 0 ILOG = 0 IDIAG = 0

Source formulation index: ISOR = 0

Irregular frequency index: IRR = 0

Diffraction/scattering formulation index: ISCATT = 0

Number of blocks used in linear system: ISOLVE = 1

Number of unknowns in linear system: NEQN = 408

BODY PARAMETERS:

NPATCH: 4 IGDEF: 2 Symmetry: Y=0

132 Appendix C. WAMIT- runs

Patch NU NV KU KV IQUI IQVI

1 86 1 3 3 4 4

2 5 7 3 3 4 4

3 5 7 3 3 4 4

4 4 1 3 3 4 4

XBODY = 0.0000 YBODY = 0.0000 ZBODY = -0.7500 PHIBODY = 0.0

Volumes (VOLX,VOLY,VOLZ): 0.455842E-01 0.456761E-01 0.456465E-01

Center of Buoyancy (Xb,Yb,Zb): -0.000934 0.000000 0.000001

Hydrostatic and gravitational restoring coefficients:

C(3,3),C(3,4),C(3,5): 0.134415E-06 0.00000 0.960473E-10

C(4,4),C(4,5),C(4,6): 0.126805E-03 0.00000 0.589192E-05

C(5,5),C(5,6): 0.126814E-03 0.00000

Center of Gravity (Xg,Yg,Zg): 0.000000 0.000000 -0.020000

Global body and external mass matrix:

4.7010E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 4.7010E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 4.7010E+01 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 2.3270E-01 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.4416E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.4416E+00

--

Output from WAMIT

--

FORCE run date and starting time: 14-Jul-2004 -- 16:14:48

--

I/O Filenames: maia.frc maia.p2f maia.out

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

**

Wave period = zero Wavenumber = infinite

--

ADDED-MASS COEFFICIENTS

I J A(I,J)

1 1 4.709911E-04

1 3 6.261392E-07

1 5 4.489813E-06

2 2 9.234812E-03

2 4 -1.849953E-08

2 6 1.010350E-04

3 1 4.119678E-07

3 3 9.720550E-03

3 5 1.158742E-04

4 2 -1.832205E-08

4 4 1.616972E-06

4 6 1.370622E-09

5 1 4.443521E-06

5 3 1.158718E-04

5 5 5.642324E-04

6 2 1.073890E-04

6 4 1.092597E-09

6 6 5.119582E-04

C.2.2 Wave period, [0.1:0.1:1]

C.2. Output 133

WAMIT Version 6.1

Copyright (c) 1999-2002 WAMIT Incorporated

Copyright (c) 1998 Massachusetts Institute of Technology

The WAMIT software performs computations of wave interactions with

floating or submerged vessels. WAMIT is a registered trademark of

WAMIT Incorporated. This copy of the WAMIT software is licensed to

CESOS

Norwegian University of Science and Technology

Trondheim, Norway

For educational use only at the above location. Release date 20 JUN 2002

High-order panel method (ILOWHI=1) Panel_Size = 0.02000

Input from Geometric Data File: Maia.gdf

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

Input from Potential Control File: maia.pot

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

POTEN run date and starting time: 14-Jul-2004 -- 15:58:49

Period Time RAD DIFF (max iterations)

0.1000 15:59:48 -1 -1

0.2000 16:00:03 -1 -1

0.3000 16:00:18 -1 -1

0.4000 16:00:33 -1 -1

0.5000 16:00:48 -1 -1

0.6000 16:01:03 -1 -1

0.7000 16:01:17 -1 -1

0.8000 16:01:31 -1 -1

0.9000 16:01:45 -1 -1

1.0000 16:01:59 -1 -1

Gravity: 9.80665 Length scale: 1.64000

Water depth: 1.50000 Water density: 1025.00000

Panel quadrature indices: IQUAD = 0 ILOG = 0 IDIAG = 0

Source formulation index: ISOR = 0

Irregular frequency index: IRR = 0

Diffraction/scattering formulation index: ISCATT = 0

Number of blocks used in linear system: ISOLVE = 1

Number of unknowns in linear system: NEQN = 408

BODY PARAMETERS:

NPATCH: 4 IGDEF: 2 Symmetry: Y=0

Patch NU NV KU KV IQUI IQVI

1 86 1 3 3 4 4

2 5 7 3 3 4 4

3 5 7 3 3 4 4

4 4 1 3 3 4 4

XBODY = 0.0000 YBODY = 0.0000 ZBODY = -0.7500 PHIBODY = 0.0

Volumes (VOLX,VOLY,VOLZ): 0.455842E-01 0.456761E-01 0.456465E-01

Center of Buoyancy (Xb,Yb,Zb): -0.000934 0.000000 0.000001

Hydrostatic and gravitational restoring coefficients:

C(3,3),C(3,4),C(3,5): 0.134415E-06 0.00000 0.960473E-10

134 Appendix C. WAMIT- runs

C(4,4),C(4,5),C(4,6): 0.126805E-03 0.00000 0.589192E-05

C(5,5),C(5,6): 0.126814E-03 0.00000

Center of Gravity (Xg,Yg,Zg): 0.000000 0.000000 -0.020000

Global body and external mass matrix:

4.7010E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 4.7010E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 4.7010E+01 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 2.3270E-01 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.4416E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.4416E+00

--

Output from WAMIT

--

FORCE run date and starting time: 14-Jul-2004 -- 16:01:59

--

I/O Filenames: maia.frc maia.p2f maia.out

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

**

Wave period (sec) = 1.000000E-01 Wavenumber (kL) = 6.602112E+02

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.709280E-04 -2.884305E-16

1 3 6.292692E-07 9.272727E-16

1 5 4.516100E-06 3.284177E-16

2 2 9.234471E-03 -5.413982E-15

2 4 -1.874278E-08 9.651816E-18

2 6 1.010406E-04 -4.343106E-15

3 1 4.124289E-07 8.431499E-19

3 3 9.720317E-03 6.410310E-17

3 5 1.158753E-04 5.368299E-18

4 2 -1.835170E-08 -4.239865E-20

4 4 1.616968E-06 1.329308E-23

4 6 1.362281E-09 5.727324E-22

5 1 4.467154E-06 3.621793E-20

5 3 1.158626E-04 8.627186E-18

5 5 5.642078E-04 -9.511445E-20

6 2 1.073873E-04 -2.162051E-15

6 4 1.129767E-09 -7.318184E-18

6 6 5.119530E-04 -4.609956E-15

**

Wave period (sec) = 2.000000E-01 Wavenumber (kL) = 1.650528E+02

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.707403E-04 3.010478E-16

1 3 6.370091E-07 -2.398987E-16

1 5 4.580054E-06 -1.727839E-17

2 2 9.233481E-03 -4.402962E-15

2 4 -1.900244E-08 -1.855292E-18

2 6 1.010328E-04 3.596654E-16

C.2. Output 135

3 1 4.249681E-07 -7.882122E-19

3 3 9.718772E-03 -1.677063E-17

3 5 1.158583E-04 -7.850746E-19

4 2 -1.867566E-08 5.996225E-21

4 4 1.616974E-06 -2.336240E-24

4 6 1.390679E-09 -2.256026E-22

5 1 4.529833E-06 1.640072E-19

5 3 1.158560E-04 -1.648423E-19

5 5 5.641785E-04 -2.306480E-19

6 2 1.073723E-04 6.196715E-16

6 4 1.145865E-09 8.817852E-19

6 6 5.119388E-04 5.293354E-16

**

Wave period (sec) = 3.000000E-01 Wavenumber (kL) = 7.335680E+01

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.704155E-04 3.968403E-17

1 3 6.502449E-07 -1.522776E-17

1 5 4.694490E-06 8.907250E-18

2 2 9.231649E-03 7.314102E-15

2 4 -1.950073E-08 4.126075E-18

2 6 1.010199E-04 2.965704E-16

3 1 4.384823E-07 -3.368762E-21

3 3 9.716596E-03 4.401478E-19

3 5 1.158453E-04 5.052470E-20

4 2 -1.920011E-08 -1.533789E-20

4 4 1.616972E-06 4.648030E-24

4 6 1.435363E-09 -2.925411E-23

5 1 4.645203E-06 -1.559198E-20

5 3 1.158403E-04 3.476715E-20

5 5 5.641074E-04 -1.118790E-20

6 2 1.073471E-04 2.902937E-16

6 4 1.218093E-09 2.867318E-18

6 6 5.119142E-04 3.336990E-16

**

Wave period (sec) = 4.000000E-01 Wavenumber (kL) = 4.126320E+01

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.699350E-04 5.330578E-18

1 3 6.711857E-07 -2.392821E-17

1 5 4.871003E-06 -3.908434E-17

2 2 9.228945E-03 -1.646622E-16

2 4 -2.035658E-08 -1.201923E-17

2 6 1.009961E-04 -9.306943E-17

3 1 4.533836E-07 1.255771E-19

3 3 9.713172E-03 -5.387274E-18

3 5 1.158173E-04 1.218350E-19

4 2 -2.007100E-08 3.795368E-23

4 4 1.616971E-06 1.757684E-23

4 6 1.547516E-09 1.904955E-22

5 1 4.819567E-06 -1.099640E-19

5 3 1.158119E-04 -9.752527E-21

136 Appendix C. WAMIT- runs

5 5 5.639940E-04 -1.095228E-19

6 2 1.073110E-04 -1.003939E-16

6 4 1.309383E-09 3.826573E-18

6 6 5.118750E-04 1.003605E-16

**

Wave period (sec) = 5.000000E-01 Wavenumber (kL) = 2.640845E+01

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.692617E-04 1.728706E-13

1 3 7.008917E-07 8.684791E-15

1 5 5.123762E-06 -7.353080E-14

2 2 9.225048E-03 7.745260E-12

2 4 -2.158270E-08 4.032976E-15

2 6 1.009694E-04 1.124007E-13

3 1 4.743512E-07 -4.605088E-14

3 3 9.708235E-03 1.276624E-11

3 5 1.157815E-04 -4.457222E-14

4 2 -2.135713E-08 6.611194E-15

4 4 1.616971E-06 6.362624E-17

4 6 1.722366E-09 -2.251760E-15

5 1 5.070368E-06 -8.231588E-14

5 3 1.157777E-04 -4.345519E-14

5 5 5.638280E-04 6.966589E-13

6 2 1.072607E-04 1.137486E-13

6 4 1.463255E-09 -1.442382E-15

6 6 5.118171E-04 4.067164E-13

**

Wave period (sec) = 6.000000E-01 Wavenumber (kL) = 1.833920E+01

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.683414E-04 1.922345E-10

1 3 7.427205E-07 6.171495E-13

1 5 5.485003E-06 -7.338564E-11

2 2 9.219452E-03 6.540605E-09

2 4 -2.340956E-08 5.565262E-12

2 6 1.009217E-04 1.087894E-10

3 1 5.150540E-07 -6.967725E-12

3 3 9.701132E-03 8.651817E-09

3 5 1.157242E-04 2.829496E-11

4 2 -2.332017E-08 7.171796E-12

4 4 1.616968E-06 4.274381E-14

4 6 2.012098E-09 -2.348399E-12

5 1 5.426095E-06 -7.888380E-11

5 3 1.157210E-04 2.293231E-11

5 5 5.635784E-04 4.838597E-10

6 2 1.071848E-04 1.135365E-10

6 4 1.689328E-09 -1.831134E-12

6 6 5.117276E-04 3.227459E-10

**

C.2. Output 137

Wave period (sec) = 7.000000E-01 Wavenumber (kL) = 1.347370E+01

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.670599E-04 8.401687E-09

1 3 8.044736E-07 -8.532202E-10

1 5 6.021754E-06 -7.111739E-09

2 2 9.210885E-03 3.077778E-07

2 4 -2.639404E-08 2.537382E-10

2 6 1.008494E-04 4.791892E-09

3 1 5.624594E-07 -1.282172E-09

3 3 9.690152E-03 3.816500E-07

3 5 1.156360E-04 2.832275E-09

4 2 -2.665645E-08 3.033706E-10

4 4 1.616967E-06 1.173752E-12

4 6 2.542375E-09 -8.672846E-11

5 1 5.959282E-06 -7.346487E-09

5 3 1.156336E-04 2.730516E-09

5 5 5.631492E-04 2.286871E-08

6 2 1.070633E-04 5.148261E-09

6 4 2.124200E-09 -7.195874E-11

6 6 5.115672E-04 1.422859E-08

**

Wave period (sec) = 8.000000E-01 Wavenumber (kL) = 1.031580E+01

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.652366E-04 1.469365E-07

1 3 8.959914E-07 -9.355689E-09

1 5 6.853449E-06 -5.896412E-08

2 2 9.197249E-03 3.199916E-06

2 4 -3.132488E-08 2.134328E-09

2 6 1.007292E-04 4.640644E-08

3 1 6.327522E-07 -1.133796E-08

3 3 9.672735E-03 3.956657E-06

3 5 1.154941E-04 3.278586E-08

4 2 -3.188530E-08 2.456862E-09

4 4 1.616961E-06 6.730696E-12

4 6 3.397474E-09 -7.141944E-10

5 1 6.785970E-06 -6.042765E-08

5 3 1.154884E-04 3.258518E-08

5 5 5.623851E-04 2.228980E-07

6 2 1.068713E-04 5.001867E-08

6 4 2.908153E-09 -6.180888E-10

6 6 5.112893E-04 1.392429E-07

**

Wave period (sec) = 9.000000E-01 Wavenumber (kL) = 8.150761E+00

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.626475E-04 4.865831E-07

138 Appendix C. WAMIT- runs

1 3 1.049478E-06 -3.996153E-08

1 5 8.350898E-06 -4.085883E-07

2 2 9.179269E-03 1.419897E-05

2 4 -3.696028E-08 7.860383E-09

2 6 1.005960E-04 1.861782E-07

3 1 7.766721E-07 -4.375577E-08

3 3 9.648960E-03 1.684336E-05

3 5 1.152914E-04 1.607833E-07

4 2 -3.788047E-08 8.796000E-09

4 4 1.616961E-06 1.660910E-11

4 6 3.751743E-09 -2.340049E-09

5 1 8.267736E-06 -4.114377E-07

5 3 1.152887E-04 1.606536E-07

5 5 5.613333E-04 1.189342E-06

6 2 1.066280E-04 2.104491E-07

6 4 3.240769E-09 -2.072853E-09

6 6 5.110257E-04 5.478361E-07

**

Wave period (sec) = 1.000000E+00 Wavenumber (kL) = 6.602188E+00

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.585422E-04 1.855594E-06

1 3 1.269610E-06 -1.975475E-07

1 5 1.030547E-05 -2.167814E-06

2 2 9.163548E-03 3.742164E-05

2 4 -3.968802E-08 1.822265E-08

2 6 1.005415E-04 4.208446E-07

3 1 9.593930E-07 -1.957890E-07

3 3 9.624320E-03 4.661277E-05

3 5 1.151283E-04 4.462850E-07

4 2 -4.051353E-08 1.992896E-08

4 4 1.616968E-06 2.519584E-11

4 6 2.753779E-09 -4.039066E-09

5 1 1.019623E-05 -2.158890E-06

5 3 1.151240E-04 4.466573E-07

5 5 5.610074E-04 3.216449E-06

6 2 1.064270E-04 5.346740E-07

6 4 2.289975E-09 -3.590595E-09

6 6 5.110796E-04 1.159657E-06

C.2.3 Wave period, [1:1:10]

WAMIT Version 6.1

Copyright (c) 1999-2002 WAMIT Incorporated

Copyright (c) 1998 Massachusetts Institute of Technology

The WAMIT software performs computations of wave interactions with

floating or submerged vessels. WAMIT is a registered trademark of

WAMIT Incorporated. This copy of the WAMIT software is licensed to

CESOS

Norwegian University of Science and Technology

C.2. Output 139

Trondheim, Norway

For educational use only at the above location. Release date 20 JUN 2002

High-order panel method (ILOWHI=1) Panel_Size = 0.02000

Input from Geometric Data File: Maia.gdf

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

Input from Potential Control File: maia.pot

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

POTEN run date and starting time: 14-Jul-2004 -- 15:58:49

Period Time RAD DIFF (max iterations)

0.1000 15:59:48 -1 -1

0.2000 16:00:03 -1 -1

0.3000 16:00:18 -1 -1

0.4000 16:00:33 -1 -1

0.5000 16:00:48 -1 -1

0.6000 16:01:03 -1 -1

0.7000 16:01:17 -1 -1

0.8000 16:01:31 -1 -1

0.9000 16:01:45 -1 -1

1.0000 16:01:59 -1 -1

Gravity: 9.80665 Length scale: 1.64000

Water depth: 1.50000 Water density: 1025.00000

Panel quadrature indices: IQUAD = 0 ILOG = 0 IDIAG = 0

Source formulation index: ISOR = 0

Irregular frequency index: IRR = 0

Diffraction/scattering formulation index: ISCATT = 0

Number of blocks used in linear system: ISOLVE = 1

Number of unknowns in linear system: NEQN = 408

BODY PARAMETERS:

NPATCH: 4 IGDEF: 2 Symmetry: Y=0

Patch NU NV KU KV IQUI IQVI

1 86 1 3 3 4 4

2 5 7 3 3 4 4

3 5 7 3 3 4 4

4 4 1 3 3 4 4

XBODY = 0.0000 YBODY = 0.0000 ZBODY = -0.7500 PHIBODY = 0.0

Volumes (VOLX,VOLY,VOLZ): 0.455842E-01 0.456761E-01 0.456465E-01

Center of Buoyancy (Xb,Yb,Zb): -0.000934 0.000000 0.000001

Hydrostatic and gravitational restoring coefficients:

C(3,3),C(3,4),C(3,5): 0.134415E-06 0.00000 0.960473E-10

C(4,4),C(4,5),C(4,6): 0.126805E-03 0.00000 0.589192E-05

C(5,5),C(5,6): 0.126814E-03 0.00000

Center of Gravity (Xg,Yg,Zg): 0.000000 0.000000 -0.020000

Global body and external mass matrix:

4.7010E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 4.7010E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 4.7010E+01 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 2.3270E-01 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.4416E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.4416E+00

--

140 Appendix C. WAMIT- runs

Output from WAMIT

--

FORCE run date and starting time: 14-Jul-2004 -- 16:01:59

--

I/O Filenames: maia.frc maia.p2f maia.out

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

**

Wave period (sec) = 1.000000E-01 Wavenumber (kL) = 6.602112E+02

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.709280E-04 -2.884305E-16

1 3 6.292692E-07 9.272727E-16

1 5 4.516100E-06 3.284177E-16

2 2 9.234471E-03 -5.413982E-15

2 4 -1.874278E-08 9.651816E-18

2 6 1.010406E-04 -4.343106E-15

3 1 4.124289E-07 8.431499E-19

3 3 9.720317E-03 6.410310E-17

3 5 1.158753E-04 5.368299E-18

4 2 -1.835170E-08 -4.239865E-20

4 4 1.616968E-06 1.329308E-23

4 6 1.362281E-09 5.727324E-22

5 1 4.467154E-06 3.621793E-20

5 3 1.158626E-04 8.627186E-18

5 5 5.642078E-04 -9.511445E-20

6 2 1.073873E-04 -2.162051E-15

6 4 1.129767E-09 -7.318184E-18

6 6 5.119530E-04 -4.609956E-15

**

Wave period (sec) = 2.000000E-01 Wavenumber (kL) = 1.650528E+02

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.707403E-04 3.010478E-16

1 3 6.370091E-07 -2.398987E-16

1 5 4.580054E-06 -1.727839E-17

2 2 9.233481E-03 -4.402962E-15

2 4 -1.900244E-08 -1.855292E-18

2 6 1.010328E-04 3.596654E-16

3 1 4.249681E-07 -7.882122E-19

3 3 9.718772E-03 -1.677063E-17

3 5 1.158583E-04 -7.850746E-19

4 2 -1.867566E-08 5.996225E-21

4 4 1.616974E-06 -2.336240E-24

4 6 1.390679E-09 -2.256026E-22

5 1 4.529833E-06 1.640072E-19

5 3 1.158560E-04 -1.648423E-19

5 5 5.641785E-04 -2.306480E-19

6 2 1.073723E-04 6.196715E-16

6 4 1.145865E-09 8.817852E-19

6 6 5.119388E-04 5.293354E-16

C.2. Output 141

**

Wave period (sec) = 3.000000E-01 Wavenumber (kL) = 7.335680E+01

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.704155E-04 3.968403E-17

1 3 6.502449E-07 -1.522776E-17

1 5 4.694490E-06 8.907250E-18

2 2 9.231649E-03 7.314102E-15

2 4 -1.950073E-08 4.126075E-18

2 6 1.010199E-04 2.965704E-16

3 1 4.384823E-07 -3.368762E-21

3 3 9.716596E-03 4.401478E-19

3 5 1.158453E-04 5.052470E-20

4 2 -1.920011E-08 -1.533789E-20

4 4 1.616972E-06 4.648030E-24

4 6 1.435363E-09 -2.925411E-23

5 1 4.645203E-06 -1.559198E-20

5 3 1.158403E-04 3.476715E-20

5 5 5.641074E-04 -1.118790E-20

6 2 1.073471E-04 2.902937E-16

6 4 1.218093E-09 2.867318E-18

6 6 5.119142E-04 3.336990E-16

**

Wave period (sec) = 4.000000E-01 Wavenumber (kL) = 4.126320E+01

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.699350E-04 5.330578E-18

1 3 6.711857E-07 -2.392821E-17

1 5 4.871003E-06 -3.908434E-17

2 2 9.228945E-03 -1.646622E-16

2 4 -2.035658E-08 -1.201923E-17

2 6 1.009961E-04 -9.306943E-17

3 1 4.533836E-07 1.255771E-19

3 3 9.713172E-03 -5.387274E-18

3 5 1.158173E-04 1.218350E-19

4 2 -2.007100E-08 3.795368E-23

4 4 1.616971E-06 1.757684E-23

4 6 1.547516E-09 1.904955E-22

5 1 4.819567E-06 -1.099640E-19

5 3 1.158119E-04 -9.752527E-21

5 5 5.639940E-04 -1.095228E-19

6 2 1.073110E-04 -1.003939E-16

6 4 1.309383E-09 3.826573E-18

6 6 5.118750E-04 1.003605E-16

**

Wave period (sec) = 5.000000E-01 Wavenumber (kL) = 2.640845E+01

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

142 Appendix C. WAMIT- runs

1 1 4.692617E-04 1.728706E-13

1 3 7.008917E-07 8.684791E-15

1 5 5.123762E-06 -7.353080E-14

2 2 9.225048E-03 7.745260E-12

2 4 -2.158270E-08 4.032976E-15

2 6 1.009694E-04 1.124007E-13

3 1 4.743512E-07 -4.605088E-14

3 3 9.708235E-03 1.276624E-11

3 5 1.157815E-04 -4.457222E-14

4 2 -2.135713E-08 6.611194E-15

4 4 1.616971E-06 6.362624E-17

4 6 1.722366E-09 -2.251760E-15

5 1 5.070368E-06 -8.231588E-14

5 3 1.157777E-04 -4.345519E-14

5 5 5.638280E-04 6.966589E-13

6 2 1.072607E-04 1.137486E-13

6 4 1.463255E-09 -1.442382E-15

6 6 5.118171E-04 4.067164E-13

**

Wave period (sec) = 6.000000E-01 Wavenumber (kL) = 1.833920E+01

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.683414E-04 1.922345E-10

1 3 7.427205E-07 6.171495E-13

1 5 5.485003E-06 -7.338564E-11

2 2 9.219452E-03 6.540605E-09

2 4 -2.340956E-08 5.565262E-12

2 6 1.009217E-04 1.087894E-10

3 1 5.150540E-07 -6.967725E-12

3 3 9.701132E-03 8.651817E-09

3 5 1.157242E-04 2.829496E-11

4 2 -2.332017E-08 7.171796E-12

4 4 1.616968E-06 4.274381E-14

4 6 2.012098E-09 -2.348399E-12

5 1 5.426095E-06 -7.888380E-11

5 3 1.157210E-04 2.293231E-11

5 5 5.635784E-04 4.838597E-10

6 2 1.071848E-04 1.135365E-10

6 4 1.689328E-09 -1.831134E-12

6 6 5.117276E-04 3.227459E-10

**

Wave period (sec) = 7.000000E-01 Wavenumber (kL) = 1.347370E+01

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.670599E-04 8.401687E-09

1 3 8.044736E-07 -8.532202E-10

1 5 6.021754E-06 -7.111739E-09

2 2 9.210885E-03 3.077778E-07

2 4 -2.639404E-08 2.537382E-10

2 6 1.008494E-04 4.791892E-09

3 1 5.624594E-07 -1.282172E-09

C.2. Output 143

3 3 9.690152E-03 3.816500E-07

3 5 1.156360E-04 2.832275E-09

4 2 -2.665645E-08 3.033706E-10

4 4 1.616967E-06 1.173752E-12

4 6 2.542375E-09 -8.672846E-11

5 1 5.959282E-06 -7.346487E-09

5 3 1.156336E-04 2.730516E-09

5 5 5.631492E-04 2.286871E-08

6 2 1.070633E-04 5.148261E-09

6 4 2.124200E-09 -7.195874E-11

6 6 5.115672E-04 1.422859E-08

**

Wave period (sec) = 8.000000E-01 Wavenumber (kL) = 1.031580E+01

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.652366E-04 1.469365E-07

1 3 8.959914E-07 -9.355689E-09

1 5 6.853449E-06 -5.896412E-08

2 2 9.197249E-03 3.199916E-06

2 4 -3.132488E-08 2.134328E-09

2 6 1.007292E-04 4.640644E-08

3 1 6.327522E-07 -1.133796E-08

3 3 9.672735E-03 3.956657E-06

3 5 1.154941E-04 3.278586E-08

4 2 -3.188530E-08 2.456862E-09

4 4 1.616961E-06 6.730696E-12

4 6 3.397474E-09 -7.141944E-10

5 1 6.785970E-06 -6.042765E-08

5 3 1.154884E-04 3.258518E-08

5 5 5.623851E-04 2.228980E-07

6 2 1.068713E-04 5.001867E-08

6 4 2.908153E-09 -6.180888E-10

6 6 5.112893E-04 1.392429E-07

**

Wave period (sec) = 9.000000E-01 Wavenumber (kL) = 8.150761E+00

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.626475E-04 4.865831E-07

1 3 1.049478E-06 -3.996153E-08

1 5 8.350898E-06 -4.085883E-07

2 2 9.179269E-03 1.419897E-05

2 4 -3.696028E-08 7.860383E-09

2 6 1.005960E-04 1.861782E-07

3 1 7.766721E-07 -4.375577E-08

3 3 9.648960E-03 1.684336E-05

3 5 1.152914E-04 1.607833E-07

4 2 -3.788047E-08 8.796000E-09

4 4 1.616961E-06 1.660910E-11

4 6 3.751743E-09 -2.340049E-09

5 1 8.267736E-06 -4.114377E-07

5 3 1.152887E-04 1.606536E-07

5 5 5.613333E-04 1.189342E-06

144 Appendix C. WAMIT- runs

6 2 1.066280E-04 2.104491E-07

6 4 3.240769E-09 -2.072853E-09

6 6 5.110257E-04 5.478361E-07

**

Wave period (sec) = 1.000000E+00 Wavenumber (kL) = 6.602188E+00

--

ADDED-MASS AND DAMPING COEFFICIENTS

I J A(I,J) B(I,J)

1 1 4.585422E-04 1.855594E-06

1 3 1.269610E-06 -1.975475E-07

1 5 1.030547E-05 -2.167814E-06

2 2 9.163548E-03 3.742164E-05

2 4 -3.968802E-08 1.822265E-08

2 6 1.005415E-04 4.208446E-07

3 1 9.593930E-07 -1.957890E-07

3 3 9.624320E-03 4.661277E-05

3 5 1.151283E-04 4.462850E-07

4 2 -4.051353E-08 1.992896E-08

4 4 1.616968E-06 2.519584E-11

4 6 2.753779E-09 -4.039066E-09

5 1 1.019623E-05 -2.158890E-06

5 3 1.151240E-04 4.466573E-07

5 5 5.610074E-04 3.216449E-06

6 2 1.064270E-04 5.346740E-07

6 4 2.289975E-09 -3.590595E-09

6 6 5.110796E-04 1.159657E-06

C.2.4 Infinite depth

WAMIT Version 6.1

Copyright (c) 1999-2002 WAMIT Incorporated

Copyright (c) 1998 Massachusetts Institute of Technology

The WAMIT software performs computations of wave interactions with

floating or submerged vessels. WAMIT is a registered trademark of

WAMIT Incorporated. This copy of the WAMIT software is licensed to

CESOS

Norwegian University of Science and Technology

Trondheim, Norway

For educational use only at the above location. Release date 20 JUN 2002

High-order panel method (ILOWHI=1) Panel_Size = 0.00600

Input from Geometric Data File: Maia.gdf

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

Input from Potential Control File: maia.pot

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

C.2. Output 145

POTEN run date and starting time: 28-Jul-2004 -- 00:55:13

Period Time RAD DIFF (max iterations)

0.0000 01:10:53 -1

Gravity: 9.80665 Length scale: 1.64000

Water depth: infinite Water density: 1025.00000

Panel quadrature indices: IQUAD = 0 ILOG = 0 IDIAG = 0

Source formulation index: ISOR = 0

Irregular frequency index: IRR = 0

Diffraction/scattering formulation index: ISCATT = 0

Number of blocks used in linear system: ISOLVE = 1

Number of unknowns in linear system: NEQN = 1731

BODY PARAMETERS:

NPATCH: 4 IGDEF: 2 Symmetry: Y=0

Patch NU NV KU KV IQUI IQVI

1 286 1 3 3 4 4

2 16 21 3 3 4 4

3 16 21 3 3 4 4

4 11 1 3 3 4 4

XBODY = 0.0000 YBODY = 0.0000 ZBODY = -100.0000 PHIBODY = 0.0

Volumes (VOLX,VOLY,VOLZ): 0.456068E-01 0.456823E-01 0.456897E-01

Center of Buoyancy (Xb,Yb,Zb): -0.001051 0.000000 0.025819

Hydrostatic and gravitational restoring coefficients:

C(3,3),C(3,4),C(3,5): 0.139246E-06 0.00000 0.240133E-08

C(4,4),C(4,5),C(4,6): 0.289848E-03 0.00000 0.663792E-05

C(5,5),C(5,6): 0.289857E-03 0.00000

Center of Gravity (Xg,Yg,Zg): 0.000000 0.000000 -0.020000

Global body and external mass matrix:

4.7010E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 4.7010E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 4.7010E+01 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 2.3270E-01 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.4416E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.4416E+00

--

Output from WAMIT

--

FORCE run date and starting time: 28-Jul-2004 -- 01:10:53

--

I/O Filenames: maia.frc maia.p2f maia.out

WAMIT- calc of indian AUV (Maia); Msc Thesis by Håvard Bø

**

Wave period = zero Wavenumber = infinite

--

ADDED-MASS COEFFICIENTS

I J A(I,J)

1 1 4.733859E-04

1 3 1.324246E-09

1 5 5.533647E-10

2 2 9.199041E-03

2 4 -2.700559E-09

2 6 1.131656E-04

146 Appendix C. WAMIT- runs

3 1 -5.011303E-10

3 3 9.700041E-03

3 5 1.150010E-04

4 2 -3.317342E-10

4 4 1.596680E-06

4 6 -6.026137E-11

5 1 -2.737651E-09

5 3 1.149854E-04

5 5 5.635803E-04

6 2 1.190352E-04

6 4 -4.095232E-11

6 6 5.080176E-04

Appendix D

CD Contents

The contents of the CD is shown in the figure above. Except for the directory
WAMIT, the contents can easily be explained in words.

• HDEmaia: An hde model of MAYA used to obtain Figure 5.9

• hdeModels: hde models of MAYA, REMUS and the vehicle of Ridley et al.
(2003) used for comparison in Chapter 5

• hdeToolBox: Contains the necessary files for installing the Matlab tool-
box developed it this thesis

• openLoop: Contains the Simulink diagram and transfer functions used in
Chapter 4

• Presentations: Powerpoint presentation used at ISR

The directory WAMIT, contains the in and output files used for added mass
estimation. The directory Matlab, simply contains a script used to dimension-
alize the output from WAMIT. The structure for the other directories are as
shown in the figure above. A detailed description of the various files is provided
in Appendix C.

147

